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ABSTRACT
Tagging is an important way for users to succinctly describe
the content they upload to the Internet. However, most tag-
suggestion systems recommend words that are highly corre-
lated with the existing tag set, and thus add little informa-
tion to a user’s contribution. This paper describes a means
to determine the ambiguity of a set of (user-contributed)
tags and suggests new tags that disambiguate the original
tags. We introduce a probabilistic framework that allows
us to find two tags that appear in different contexts but
are both likely to co-occur with the original tag set. If
such tags can be found, the current description is consid-
ered “ambiguous” and the two tags are recommended to the
user for further clarification. In contrast to previous work,
we only query the user when information is most needed and
good suggestions are available. We verify the efficacy of our
approach using geographical, temporal and semantic meta-
data, and a user study. We built our system using statistics
from a large (100M) database of images and their tags.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.5 [Pattern Recognition]: Models

General Terms
Algorithms

Keywords
tagging, photos, query expansion, ambiguity

1. INTRODUCTION
Tags are an important part of today’s multimedia

databases. They are often contributed by users when they
submit an image or video and form a key part of the search
experience. Content-based multimedia search remains out
of reach, and a simple tag like “Tokyo” provides more in-
formation than we can possibly glean from content-based
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Figure 1: An example of how different expansion of
one tag (“jaguar”) can lead to very different image
descriptions.

algorithms. Thus, making it as easy as possible for users
to enter tags alongside multimedia content is important.
This work addresses the problem of eliciting high-quality
tags from users.

There have been numerous efforts to suggest tags to
users [4, 15, 17, 19]. A common method is to suggest the
most likely co-occuring tags. However, in many cases, the
most likely tag is also the most obvious and least informa-
tive. For example, given the tag “goldengate,” another com-
mon tag is “sanfrancisco,” but this tag does not add any new
information. Instead, we want to ask the user if they want
to add “night,”“sunny” or “fog.”

There are two scenarios for which one would want to sug-
gest a new tag to the user. The first scenario is if the current
tag set has more than one meaning. Resolving this type of
ambiguity is non-trivial, as there exist many different ways
a tag set can appear ambiguous. Examples of ambiguity
are word-sense ambiguity (e.g. “jaguar” can be a car or an
animal), geographic ambiguity (e.g. “Cambridge” as in MA
or UK), temporal ambiguity (e.g. “Superbowl” from 2006
or 2005), language ambiguity (e.g. “mist” means dung in
German and fog in English), etc. Ideally, we would like to
have one algorithm to handle all of these cases, without re-
sorting to different additional side information every time
(e.g. time or location analysis). The second scenario is if
the current tag set is not sufficiently specific. For example,
the tag “Asia” is not technically ambiguous; however, the
images accompanied with this tag are very diverse and can
range from busy street scenes in Tokyo to panorama shots
of the Himilayas.
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We unify both scenarios into a single framework that al-
lows us to find additional tags and quantify the potential
benefit from adding them to the tag set. We will refer to
both cases as ambiguity. Figure 1 illustrates how expanding
a tag set can lead to very different image descriptions.

This work makes an important contribution to the litera-
ture. Most importantly, we propose in Section 3 a statistical
means to suggest the tags that best reduce the ambiguity of
the starting tag(s). As part of this statistical model, we mea-
sure the ambiguity of tag sets within the context of the data.
This is important because we only want to interrupt the user
to ask for more information when it is truly necessary and
when additional tags can significantly reduce the measure of
ambiguity. After tuning and verifying our algorithm with a
user study (Section 5), we further test our approach by mea-
suring the resolution of ambiguity using alternate channels
of metadata, such as time and location (Section 6).

2. RELATED WORK
Tagging is a popular means of annotating objects on the

web [10, 14]. Tagging allows people to describe and find
interesting objects [4] and organize them by position [2].
Tagging is an important form of user-generated content and
our work aims to improve the quality of tags.

There are several approaches for suggesting tags to users.
Both Mishne [15] and Xu [19] propose systems that make
suggestions by aggregating tags from similar textual con-
tent. Ames and Naaman propose a system called ZoneTag
to make it easier for mobile-phone users to tag the photos
they upload based on location and previous tags [4]. Finally,
Sigurbjörnsson proposes a system based on a probabilistic
model of tag usage across all users [17]. Each of these sys-
tems is looking for the most likely tags to describe content.

Similarly, there is an extensive literature for describing im-
ages based on image content and the words that surround
an image reference. Heesch notes the importance of au-
tomated annotation for searching and browsing large image
collections [12]. Wang selects candidate tags and determines
which tags are suitable using the visual content of the im-
age [18]. Zhou uses a heuristic greedy, iterative algorithm
to estimate the probability that words are in the caption of
an image by examining the text surrounding the images [20].
Compared to this work, our approach follows a different phi-
losophy. We want to recommend clarifying tags when the
current tags are not specific enough to describe an object.

Our work is perhaps most similar to the work that is
done on query performance and query expansion. Cronen-
Townsend suggest that query performance is correlated with
the clarity of a query [8]. Clarity measures the ambiguity of
a query with respect to a collection of textual documents.
Amati proposed the notion of query difficulty to predict
query performance [3]. Their basic idea is that the term
weight, which is given by the divergence of the query terms’
distribution in the top-retrieved documents from their dis-
tribution in the whole collection, provides evidence of the
query performance. A similar approach is suggested by
He [11]. Carpineto proposes an information-theoretic ap-
proach that expands a search query based on the top results
of an initial ranking. The words of the top-retrieved doc-
uments are added to the search query and weighted based
on the Kullback–Leibler (KL) divergence from the overall
distribution of the entire corpus [5]. Though highly related
to the detection of ambiguity of tags, the set of metrics for

p(t|T ∪ {t1})

p(t|T ∪ {t2})

tags

tags

tags

t2 = “UK”

t1 = “MA”

T = {“Cambridge”}

p(t|T )UKMA

Figure 2: Three probability distributions over co-
occuring tags, illustrating the ambiguity of a tag like
“Cambridge” and the new distributions with addi-
tional tags such as “MA” or “UK”.

search query expansion and predicting query difficulty, such
as clarity, is targeted for rich-text documents. We have a
more difficult problem because our data is extremely sparse.

3. METHOD
In this paper, we propose a method that measures the

level of ambiguity of a tag set T and selects two additional
tags that can be proposed to a user to best disambiguate
it. Our method underlies the intuition that a tag set is
ambiguous if it can appear in at least two different tag con-
texts. These could be defined by geographic locations, word
senses, languages or temporal events, etc. We measure the
tag contexts by the distribution over all tag co-occurrences.

A good example of an ambiguous tag is the word “Cam-
bridge,” since there are well-known examples of Cambridge
in both Massachusetts and England. Suggesting a tag such
as “university” is very likely in both contexts, but does little
to resolve the ambiguity. Thus given the tag “Cambridge,”
we want to note that this is an ambiguous tag, and suggest
either “MA” or “UK” because these words do the most to
remove the ambiguity. We assume that the tag set {“Cam-
bridge”,“MA”} co-occurs with different tags than {“Cam-
bridge”,“UK”}. These additional tags are defined by loca-
tions and events that differ strongly between the two very
distant cities.

First, we will introduce a probabilistic framework that
provides us with a probability p(t|T ) that a tag t co-occurs
with the set T . Instead of suggesting the tags that are most
likely within this framework, we suggest the two tags ti, tj

that, once added to T , give rise to maximally different prob-
ability distributions p(t|{T ∪ti}) and p(t|{T ∪tj}). The level
of ambiguity of a set T is measured by a weighted KL di-
vergence of these two probability distributions. This idea is
illustrated in Figure 2.

Probabilistic Framework

We propose a probabilistic framework to model tag co-
occurrences and measure ambiguity. We assume an image
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is labeled with a set of tags T = {ta, tb, ...}. The expression
I(T ) is the number of images that contain the tag set T .
For any pair of tags ti, tj , we denote the number of image
co-occurrences by I(ti∩tj), and then we form an estimate of
the probability that a co-occuring tag, ti, appears in another
tag’s presence, tj , by calculating

p(ti|tj) =
I(ti ∩ tj)P
k I(tk ∩ tj)

. (1)

Here we normalize by the sum of co-occurrences for all other
possible contexts (tk). We further sum over all contexts to
calculate the prior probability that any one tag is used on
any image to find

p(ti) =

P
j I(ti ∩ tj)P

j,k I(tk ∩ tj)
. (2)

We base all of our models on these two probability distribu-
tions, which we calculate from pair-wise co-occurrence data.

Tags do not appear only in pairs. We really want to know
the probability of a tag in any context, but we can not store
this quantity for all tag sets, T . To simplify our computa-
tion, we assume that conditional co-occurences are indepen-
dent. This leads to:

p(T |ti) =
Y

t∈T

p(t|ti). (3)

Using this assumption, we can write the probability of a tag
given any context using Bayes’ rule

p(ti|T ) =
p(T |ti)p(ti)

p(T )
=

p(ti)
Q

t∈T p(t|ti)P
j p(tj)

Q
t∈T p(t|tj)

. (4)

Pairwise Disambiguation

We make a basic assumption about the meaning of ambigu-
ity: A set of labels T is ambiguous if there exist two labels
ti and tj such that adding one or the other gives rise to very
different distributions over the remaining labels. Thus, given
the tag “Cambridge,” adding the tags “MA” or “UK” leads
to very different locations; and the other tags we see in this
context are likely to change (stores, people, etc.). We will
measure the deviation between two posterior distributions
with the KL divergence [13]. Let T denote the current set
of tags, and let ti, tj be two additional tags. To abbreviate
notation, let us denote the corresponding conditional distri-
bution, after ti has been added to T , as pi(t) = p(t|{T∪ti}).
The KL divergence between these two distributions is:

KL(pi||pj)=
X

t

pi(t) log

„
pi(t)
pj(t)

«
. (5)

This equation integrates the amount of disagreement be-
tween the two distributions over all tags t, weighted by the
probability p(t|{T ∪ ti}). It is strictly non-negative but not
necessarily symmetric. As in our case, there is no meaning-
ful notion of order for the tags ti, tj , we use a commonly
used symmetric variation

K̄L(pi, pj) = KL(pi||pj) + KL(pj ||pi). (6)

Given that our data base is limited, it is always possible
to find tags ti, tj with maximal disagreement by selecting
two terms that only appear in very different contexts and
are unrelated to the set T. For example, for the tag set
T = {“Cambridge”}, we could add t1 = “fridge” and

t2 = “mercedes” and the KL divergence between the two
posterior distributions would presumably be very high. To
prevent this, we weight Eq. 5 by the conditional probabilities
of the two terms and therefore discount additional tags that
have no real relation with the original tag set. We define the
weighted divergence as

div(pi, pj) = p(ti|T )p(tj |T )g(K̄L(pi||pj)), (7)

where g() is some monotonically-increasing function that
trades off the impact of the KL divergence with the con-
ditional probabilities.

We define the measure of ambiguity of a tag set T as
the maximum divergence between two potential posterior
distributions:

f(T ) = maxi,jdiv(pi, pj). (8)

The function g(x) can be any monotonic function that in-
fluences the impact of the KL divergence on the output. We
experimented with g(x) = xe for a range of values of e. If
the value of f(T ) is above a certain threshold, we suggest
the labels ti and tj , because they represent the “direction”
of greatest ambiguity, f(T ), to the system. Eq. 8 can be
adapted to more than two tag suggestions in several ways,
e.g. greedily, given ti, tj , by letting the value of a third
tag tk be the minimum divergence from the top two tags
min(div(pk, pi), div(pk, pj)).

Large-Scale Implementation

A näıve implementation of Eq. 8 results in a computational
complexity of O(n3), where n denotes the number of terms
in the database. Clearly, this is impractical. However, for
any given tag set T , almost all tags ti have a very small
conditional probability p(ti|T ). As we are only interested
in the two terms with maximum disambiguation value, it
is generally sufficient to restrict the search over the top N
most common terms, where N is some small number. For
our experiments, we found N = 25 to be sufficient, under
which 97.5% of all computations resulted in exact results.
(Note: this approximation mostly affects the value of Eq. 8
and not the suggested tags nor the ordering from most to
least ambiguous tags.) A more detailed discussion of how to
set the value N is in Section 5. Even finding the top N tags
can be safely approximated, as the majority of all tags are
never likely in any context. (See Figure 3 for a plot of the
distribution of co-occurences.)

For a very large scale implementation, one can take ad-
vantage of the fact that Eq. 8 is truly parallelizable. In a
map-reduce framework [9], the mapper implements the div()
operator defined in Eq. 7 and the reduce phase calculates the
max() operator.

4. DATA
In Section 3, we described a generic approach for detect-

ing the ambiguity of a given set of tags. To evaluate our
method, we generated a data corpus consisting of image tags
from publicly available FlickrTM images. We also used these
photos and their tags in a small user study described later.

Photo Data

FlickrTMis an online photo-sharing service that contains
more than 2 billion photos that are uploaded, tagged and
organized by more than 8.5 million registered users. For the
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Figure 3: Frequency distribution of the co-occuring
tags in Flickr. The tags are sorted according to co-
occurrence frequency along the horizontal axis.

research described in this paper, we used a random snap-
shot from Flickr of 102 million publicly-available photos with
annotations. The photos were uploaded between February
2004 and December 2007 and each photo has at least one
user-defined tag. The collection we use in this paper con-
tains about 407 million tags in total, and about 6.2 million
unique tags.

Figure 3 shows the tag co-occurance distribution on a log-
log scale. The horizontal axis represents the 950,000 unique
tags that are contained in the co-occurance matrix, ordered
by the co-occurance frequency in descending order. The
vertical axis refers to the number of tags co-occuring with a
given tag. We can model the distribution accurately with a
power law. The head of the distribution contains tags that
are generic and co-occur with many other tags. For exam-
ple, the five most frequent co-occurring tags are: 2006, 2005,
wedding, party and 2007. Normally, the tail of the distribu-
tion contains infrequent tags that typically can be catego-
rized as incidentally occurring words, such as mis-spellings,
and complex phrases. Due to their infrequent nature, we
expect that these highly-specific tags are not useful for dis-
ambiguation. Our pre-processing steps remove these tags.

We train and test the proposed tag suggestion method
with a subset of these photo annotations. We first removed
photos from the collection that only have one tag, as these
do not contribute to the tag co-occurance matrix. Second,
we removed tags used less than five times or by only one
user. The final data set contained 950,000 unique tags.

We report our results using the top 235 most frequently
occurring tags with distributions ranging over all tags (after
removing the year-tags 2004–2008, since their co-occurrence
patterns are artificial). For the user study described next,
we chose 50 tags within the top 235, with scores that are
uniformly distributed through the range of ambiguity scores.

User Data

We collected data for a user experiment using a web survey
that showed a tag and two sets of photos that our ambigu-
ity measure predicted would help disambiguate the original
tag. Subjects were told, “We are interested in measuring
the ambiguity of different tags.” We then asked them, “Do

you expect the photos with the tag ‘Jaguar’ to need further
clarification?” Users were asked to respond on a four-point
scale, from “no further tags are necessary,” to “yes, addi-
tional tags are necessary to clarify.” We collected data from
12 of our colleagues (who didn’t know our hypothesis) using
50 tags with a wide range of ambiguities. There was a wide
variance in their scores because of the types of data we ex-
amined. For example, for most people, the tag “Athens” is
highly specific (and Greek), unless you happen to live near
Athens, Georgia or Athens, Ohio. This ambiguity is seen
in our photo database. There are 68,000 entries for Athens,
of which 35,000 are labeled “Greece” and 6,000 are labeled
either “Ohio” or “Georgia.” A user’s ability to know of these
ambiguities is limited by his/her personal experience.

5. USER STUDY
We performed a user study to tune the parameters of our

model, and to verify that our ambiguity measure correlates
with human expectations. Our algorithm has two differ-
ent parameters. One is an exponent that controls the rela-
tive importance of tag frequency versus the KL divergence,
and this affects the behavior of our algorithm. The other
is a parameter that specifies how deep we look for tag rec-
ommendations, and is important because of computational
concerns.

The more important parameter controls the behavior of
the algorithm. We would like to adjust the trade-off be-
tween tag probabilities and the KL divergence by finding
the function, g, that gives the best fit to human judgments
of ambiguity. We restrict ourselves to functions of the form,
g(x) = xp, for some constant p, so the entire function is mul-
tiplicative. Thus, we only have to consider different values
of the exponent.

Based on experimental data described in Section 4, we
have human data that measures the degree of (human) am-
biguity for different terms in our database. We use this
data and evaluate its correlation with different versions of
our ambiguity function. We assume a simple, linear model
and use Pearson’s correlation [7] to measure performance,
but non-linear measures based on ranking can also be used.

We evaluate the correlation with human data using 12 dif-
ferent exponents between 0 and 6. Figure 4 shows the frac-
tion of variance explained by our model for different versions
of the ambiguity function and our human data. We find a
broad peak for an exponent between 2 and 4. In the rest of
this work, we used the simplest result, setting g(x) = x2.

In a second experiment, we measured the number of tags
we need to check to find the best reduction in ambiguity.
The expression in Eq. 8 is a search over all possible i and
j for the tags that maximize the measure. This has com-
plexity O(N2), where N is the number of tags we consider
and thus the computational complexity quickly grows un-
wieldy. But because of the probabilities at the front of the
equation, there is no need to examine terms that are rare.
Thus, we can cut the search after we have seen the most
popular sub-tags for each search. We tuned this parameter
by numerically evaluating, using the 235 most popular tags,
the effect of varying a cutoff. We computed the ambiguity
for each tag with N varying from N = 2 to N = 40, and
counted how many tags were necessary to obtain the exact
score (at N = 40). Figure 5 shows the results of this study.
As expected, the ambiguity scores grow rapidly and by the
time we get to 25 tags, the curve has almost entirely flat-
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Figure 4: Pearson’s correlation between different
versions of our ambiguity function and human judg-
ments of ambiguity. We limited our study to differ-
ent exponents. Higher correlations indicate better
fits between the ambiguity function and our human
raters.

tened. If we cut off the search after 25 tags, then we only
lose about 3% of the final ambiguity score.

The correlation between the (averaged) outcomes of the
user study and our algorithm is shown in Figure 4. Setting
the exponent in the ambiguity measure Eq. 8 to zero causes
the measure to ignore the KL divergence, and for our system
to behave much like a normal tag-suggestion system. In
effect, we rate tags highly if there are two additional tags
that both account for much of the additional information
(because the probability of both ti and tj are high). This
forms a rudimentary strawman—we are picking tags that are
popular. Tags that had such popular suggestions performed
very poorly, and explained only 3% of the human variance.
With the right exponent (e.g. g(x) = x2), even with the
“ambiguity” of our user’s task, our measure of ambiguity
was able to explain more than 35% of the variance in the
user survey.

6. METADATA RESULTS
In this section we show that for 57% of the most ambigu-

ous tags, our algorithm suggests additional tags that are
minimally correlated along one of three measurable dimen-
sions: temporal, geographic and semantic. In these cases,
the resulting tag sets resolve the ambiguity. (We expect the
explanation is not so simple for the remaining 43%.)

Many of the images in Flickr come with metadata we can
use to explain our results. For this paper, we look at three
different types of data: geographic, temporal and semantic.
We describe each type of data in turn and describe how they
can be used for testing the disambiguation algorithm. In
each case, the goal is to measure the degree of correlation, or
more importantly for our task, the degree of overlap between
two sets of data. We want to see if the tags we suggest
to resolve ambiguity separate the original photos in one of
these three dimensions. At its heart, this is a correlation
operation.
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Figure 5: The graph shows the fraction of images
whose tag suggestion computation lead to exact re-
sults given a cutoff parameter N .

Temporal Comparison:

Photos uploaded to Flickr often come with automatically an-
notated time-stamps that specify when the photo was taken.
This data is not always correct, but this noise establishes a
lower bound on our algorithm. To measure the temporal am-
biguity, we collect all photos with tags {T ∪ t2} or {T ∪ t3}
for single-tag sets T = {t1}.

For each of these collections, we form a histogram, using
one-month wide bins between 2004 and the end of 2007, and
normalize these to create a temporal probability model for
each tag ti. Given a photo with all tags in T and also tag
ti, the empirical probability of it being uploaded in month
m is ti(m). Figure 6 shows one example of the temporally-
ambiguous tag set T = {“holiday”} with co-occuring tags
“Christmas” and “vacation”. Although both tags co-occur
frequently with T , their temporal distributions differ dra-
matically.

We wish to measure the degree to which two tags, ti, tj ,
lead to different temporal distributions, provided both co-
occur frequently with T . To measure the degree of similarity
between tag sets {T ∪ ti} and {T ∪ tj}, we then compute the
cross-correlation

Rg(ti, tj) =
X

m

ci(m)cj(m) (9)

where ci(m) is the number of photos with tags {T ∪ ti} in
month m. Sets of photos and times with no overlap have a
temporal correlation of 0, while photos with similar temporal
distributions have a correlation of 1.

Geographic Comparison:

Flickr allows users to tag their photos with a geographic
location. This can be done automatically based on the cam-
era’s GPS information, or entered manually using a map-
based user interface. We use this longitude and latitude
data to study the geographic ambiguity of our photo collec-
tions.

The geographic data is both two-dimensional and is dis-
tributed over widely different scales. Thus, we don’t have
enough data for a straightforward calculation of the his-
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Figure 6: Probability distributions showing the
distribution of photos for the tag sets {holiday},
{holiday, vacation} and {holiday, christmas} showing
these two subtags are used at different times.
Holiday–christmas pictures are more common at
the end of the year, while holiday–vacation pictures
are more common during the Northern-hemisphere
summer.

togram and correlation. Instead, given a set of location data
l(x, y), we measure the statistics of the data and fit a full-
covariance Gaussian model to the geographic data for each
set of photos—this is a form of smoothing. Thus, we model
the geographic spread of a set of photos with the Gaussian

Gi(!x) =
1

2π|Σ|1/2
exp[−1/2(!x− !µ)Σ−1(!x− !µ)] (10)

where !x = (x, y), !µ is the mean of the data and Σ is a 2× 2
covariance matrix. We fit two Gaussians to the locations of
the photos tagged {T ∪ tj} versus {T ∪ tj}. We analytically
compute the cross-correlation of the two Gaussians and then
calculate the geographic correlation using

Rg(ti, tj) =
1
Z

ZZ
Gi(!x)Gj(!x)d!x, (11)

where Z is a normalization constant. This gives us a
(smoothed) estimate of the geographic cross-correlation of
the photos with the two sets of tags.

Figure 7 shows an example of geographic independence.
In this case the tag “elephant” is often seen with the words
“Africa” or “Thailand” accompanying it. Evidently from the
other tags that co-occur, there is enough difference in their
contexts so that geographic ambiguity is present.

Semantic Comparison:

Finally, we also look for information about the semantic
meaning of each tag set. Like previous work [6], we use the
number of web pages returned in a web search as a rough
measure of semantic content. In general, adding a tag’s syn-
onym does not change the number of results, but adding a
semantically-orthogonal term dramatically reduces the num-
ber of results. Thus, we compare the results for {T ∪ ti} or
{T ∪ tj} versus {T ∪ ti ∪ tj} to measure semantic ambiguity.

!"!#$%&'()!)**+,)#'(
'$%-"%&.)!)/0/)#'(

%12-3%)!)*/4)#'(

Figure 7: A scatter plot showing the distribu-
tion of photos for the tag sets {elephant} (shown
with black dots), {elephant, thailand} (red ’x’) and
{elephant, africa} (blue ’o’). We have smoothed
the data and represented each set with a two-
dimensional Gaussian as shown above. (The ellipse
for Thailand’s photos is too small to see here.) There
are clusters of data in North America and Europe
that are not matched by either submodel.

If ti and tj are semantically related, then we do not expect
to see much overlap in the results.

We do this by querying the web and looking at the number
of web pages that satisfy our queries. We use the Jaccard
index to compare two sets of web pages and measure their
correlation [16]. This is done by dividing the size of the
intersection of the two sets by their union. If the two sets
have no overlap, then the Jaccard index is 0, while if there
is perfect overlap, then the measure is 1.

Let web(T ) be the set of web-search results returned by
a query for all the tags in set T . Thus, the correlation in
semantic space between two queries is equal to

Rs(ti, tj) =
|web(T ∪ ti ∪ tj)|

|web(T ∪ ti) ∪ web(T ∪ tj)|
(12)

and we calculate the union of web pages in the denominator
using: |web(a) ∪ web(b)| = |web(a)|+ |web(b)|−|web(a∪ b)|.

The Jaccard index is calculated by counting the num-
ber of web pages returned from the public Yahoo search
API.[1] Figure 8 shows the distribution of the correlations.
In many cases, the suggested tags produce distinct distribu-
tions, which shows up as different semantic ideas and thus
a low correlation. More importantly, there are a number
of tags that have zero semantic correlation, suggesting that
these tags are semantically ambiguous and we have resolved
the ambiguity by suggesting two new tags that are seman-
tically diverse.

Meta Explanation:

We do not expect the metadata analysis described in this
section to explain all types of ambiguity. But it is promising
that we can identify many of the issues that make a tag
ambiguous from the data associated with each image. This
gives us confidence that we are measuring ambiguity in a
useful way.

The metadata can only explain how we resolve some am-
biguous data, but not give a measure that is correlated with
ambiguity. For example, “June” or “July” resolve a tempo-
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Figure 8: Histogram of semantic correlations. The
graph shows how many of the original tags have dis-
ambiguating tags that fall into each of correlations
bins in 0.1 increments.

ral ambiguity, however our system does not suggest them as
the photos taken in June and July are usually not signifi-
cantly different. Similarly, the images taken in Sunnyvale
and Santa Clara, two neighboring towns in Silicon Valley,
are not that different—people are taking the same kinds of
photos and are probably labeling them with the same kinds
of tags. On the other hand, North and South Korea, even
though they are adjacent, will have very different kinds of
photographs.

Figure 9 shows the fraction of photographs for which we
can explain how we resolve the ambiguity using any of the
three metadata dimensions: geographic, temporal and se-
mantic. A metadata dimension is said to explain the ambi-
guity of a photo, and resolve it, if the correlation of the two
suggested tags in that dimension is low enough. Figure 9
shows the fraction of tags that are explained as we vary the
explanation threshold from 0 to 1. More than 40% of the
photos are explained at even the lowest thresholds (0.05).

Figure 10 shows how all photos are explained by different
measures using a correlation threshold cutoff of 0.1. At all
levels, the semantic measure, even though it was measured
using text-web data, explains the majority of the images.

Table 1 shows the 50 most ambiguous examples (from the
250 most common tags) together with the tag suggestions,
the ambiguity score and the KL-divergence value. The ta-
ble also shows the metadata correlation values. Correlation
values below 0.1 are highlighted in bold. Not all ambiguous
cases can be explained through metadata, in particular none
of the terms in the top 50 can be explained through time.
Due to the nature of image tags, the top 50 ambiguous terms
contain many geographically ambiguous tags (eg “washing-
ton”), but also word-sense disambiguations (“football”) and
terms from composite expressions (“world” or “spring”).

7. CONCLUSION
In this paper, we describe a new means to suggest tags

based on ambiguity. We do not want to suggest just the
most common tags, but instead we want to suggest tags
that allow people to better describe their content.
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Figure 9: The fraction of tags for which we can ex-
plain the source of the ambiguity, as a function of
the correlation threshold used to fix an explanation.

We define a novel measure of tag ambiguity, based on a
weighted KL divergence of tag distributions. Our approach
both measures the ambiguity of the existing tags, and sug-
gests new tags that best reduce this ambiguity. This is im-
portant because asking for new tags is a user-intensive ac-
tivity and we want to ask when the benefits are significant.

We tested our approach with a user study that asked users
to evaluate the ambiguity of 50 different tags. We used this
data to validate and tune the parameters of our algorithm.
We further showed that we can explain more than half of
the found ambiguous tags along one of three dimensions:
temporal, geographic or semantic. Based on our user test
and the metadata, we explain more than 35% of the vari-
ance of our ambiguity measure, and infer the reason for the
ambiguity in more than 50% of the cases.

In the future, we wish to examine how these tag sugges-
tions impact search, both for multimedia and for text-based
web search.
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T t1 t2 ambiguity  KL time geo semantic

 washington dc seattle 3.94 84.14 0.905 0.000 0.120

 san francisco diego 3.05 60.69 0.947 0.507 0.161

 world cup disney 2.1 151.96 0.332 0.068 0.020

 new york zealand 1.84 80.23 0.896 0.000 0.049

 la losangeles de 1.79 72.52 0.954 0.009 0.045

 australia sydney melbourne 1.29 53.49 0.976 0.587 0.234

 d50 nikon horses 1.24 106.18 0.666 0.965 0.004

 cameraphone moblog zonetag 1.22 90.82 0.491 0.888 0.002

 texas austin dallas 1.18 64.12 0.803 0.348 0.193

 south africa korea 0.97 115.12 0.803 0.000 0.250

 canada ontario vancouver 0.92 71.36 0.968 0.000 0.162

 japan tokyo kyoto 0.91 27.69 0.979 0.501 0.078

 temple japan cambodia 0.88 121.57 0.837 0.000 0.101

 oregon portland coast 0.75 37.84 0.876 0.404 0.113

 china beijing shanghai 0.73 31.07 0.971 0.051 0.187

 baseball okinawa mlb 0.72 157.91 0.774 0.000 0.001

 asia china thailand 0.69 87.22 0.812 0.082 0.219

 africa south tanzania 0.68 66.93 0.828 0.003 0.193

 sports action athletes 0.68 137.2 0.639 0.524 0.029

 canon eos powershot 0.66 86.02 0.967 0.966 0.097

 hawaii maui oahu 0.65 38.39 0.914 0.944 0.291

 seattle washington photobooth 0.64 92.68 0.246 0.001 0.000

 zoo animals sandiego 0.63 42.79 0.925 0.028 0.055

 florida orlando beach 0.58 54.77 0.941 0.114 0.157

 france paris provence 0.58 48.22 0.907 0.010 0.078

 race bike car 0.58 50.88 0.880 0.916 0.097

 scotland edinburgh glasgow 0.58 37.39 0.947 0.510 0.348

 spring flowers break 0.58 59.19 0.563 0.707 0.069

 usa california newyork 0.58 50.47 0.962 0.013 0.190

 man burning male 0.57 71.75 0.340 0.123 0.050

 show music car 0.56 58.23 0.928 0.841 0.157

 dance party bellydance 0.55 93.03 0.392 0.898 0.004

 animals zoo pets 0.54 49.4 0.960 0.998 0.049

 newzealand wellington southisland 0.54 45.38 0.797 0.648 0.000

 town city cape 0.54 42.66 0.782 0.000 0.072

 america usa south 0.53 33.94 0.846 0.034 0.172

 california sanfrancisco losangeles 0.53 52.31 0.956 0.090 0.000

 deutschland germany horse 0.52 144.66 0.216 0.593 0.013

 nikon d50 d200 0.52 35.99 0.939 0.971 0.167

 football soccer nfl 0.51 67.02 0.414 0.185 0.223

 halloween party pumpkin 0.51 30.35 0.970 0.993 0.095

 bike bicycle motorcycle 0.5 50.01 0.888 0.971 0.042

 festival music japan 0.5 47.35 0.865 0.281 0.081

 germany deutschland berlin 0.5 21.17 0.986 0.818 0.106

 thailand bangkok chiangmai 0.5 34.63 0.918 0.464 0.022

 ireland dublin travel 0.49 30.82 0.826 0.463 0.115

 europa europe oldenburg 0.48 88.59 1.000 0.013 0.006

 ice snow hockey 0.47 74.02 0.817 0.946 0.054

 uk england scotland 0.47 39.05 0.948 0.447 0.233

 boston massachusetts beantownsoftballleague 0.46 77.12 0.626 1.000 0.000

Table 1: Examples of disambiguating suggestions for the 50 most ambiguous tags within the 250 most common
tags. The table shows the original tag T , the two suggested tags t1 and t2, the ambiguity score, the value of
the KL divergence, and the meta data correlations: time, geo and semantic. A low correlation score indicates
that the ambiguity might be explained through the respective meta-data context (bold). Some co-occurrences
like “beantownsoftballleague” and “boston” or “deutschland” and “horse” are over represented due to single
power-users whose uploading coincided with our data set generation. We expect these anomalies to disappear
with more data and better uniform sampling.
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