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Abstract
We describe a perceptual space for timbre, define an objective met-
ric that takes into account perceptual orthogonality and measure
the quality of timbre interpolation. We discuss two timbre rep-
resentations and measure perceptual judgments on an equivalent
range of timbre variety. We determine that a timbre space based
on Mel-frequency cepstral coefficients (MFCC) is a good model
for a perceptual timbre space.

1. Introduction
Timbre is defined as “that attribute of auditory sensation, in terms
of which a listener can judge that two sounds similarly presented
and having the same loudness and pitch are dissimilar” [1]. This
paper considers a perceptual space that may be useful in studying
the role timbre plays in sound perception. We compare two dif-
ferent representations for timbre and compare their relevance to
perception.

We aim for a timbre descriptor which is a parsimonious and
orthogonal model of human timbre perception. The parsimony
means that we have a minimal representation which expresses
the essential quality of the timbre perception. The orthogonal-
ity, which we interpret as the euclidean distance property, is the
linear correspondence between the timbre representation and the
perceptual timbre space. Such a perceptual representation exists
for loudness (sons) and pitch (mel scale). We want to understand
how people perceive sound, whether spoken, musical or environ-
mental. We want to build a model of sound perception that is as
fundamental as the three-color model for vision. From an engi-
neering perspective, a compact description could provide the basis
for improved sound analysis methods.

Our goal, obviously, requires a quantitative approach for psy-
choacoustic experimentation. Existing timbre studies include ones
based on multidimensional scaling [2, 3, 4]. These authors inves-
tigated the nature of timbre perception and found the features such
as spectral centroid, temporal decay, and fluctuation play impor-
tant roles for the perceived impression of timbre. However, this
approach is problematic in that the axes produced by the MDS
algorithm are not labeled. We want to have a clearer idea about
the geometry of the perception. Furthermore, the time-variant (dy-
namic) and time-invariant (static) sounds are tested together. Al-
though MDS studies revealed that the difference in spectral cen-
troid contributes to timbral perception, we do not yet know the
quantitative causality between the spectral shape of a static sound,
and the percept of the timbre. Therefore, we think, although it may

seem conservative, we should start from articulating this quantifi-
able relationship, keeping the time-variant factors aside. These
dynamic factors, which govern a significant part in timbral percep-
tion, are yet indescribable without having a perceptually orthogo-
nal spectral shape representation.

This paper takes a different approach to timbre perception than
previous works. The timbre work based on multidimensional scal-
ing start with sounds, measure perceptual distances, synthesizes
a representation or coordinate system, and then explain the MDS
axis. In this work, we start with a coordinate system, synthesize
sounds based on this representation, and then measures how well
each representation fits our criteria for the optimum perceptual
space.

Besides the perceptual studies of timbre, there have been sta-
tistical approaches in audio signal processing, using various fea-
tures to capture the timbral quality. Features such as spectral cen-
troid, or Mel-frequency Cepstral Coefficients (MFCC) have been
used to model spectral shapes. However the quantitative causality
between these features and the timbre perception is still unknown,
and such knowledge is needed for optimizing countless features
to perceptually essential ones, hopefully resolving the curse of di-
mensionality.

Our previous work showed that MFCC is a good representa-
tion of human perception of timbre compared to an alternative rep-
resentation [5, 6]. This alternative representation is called linear
frequency coefficients (LFC), and as described in the later section,
has the same statistical property as MFCC except for the percep-
tual weightings. However, it is possible that the LFC test stimuli
covered a larger perceptual space than MFCC test stimuli used in
the previous experiments. When one representation covers more
space than the other, it may not be a fair comparison. In this ex-
periment, we force the range of timbres covered by LFC stimuli
to be smaller than MFCC stimuli, compare the representations, so
that we can judge their relevance to timbre perception.

In this introduction, we describe the type of timbre metric
needed to evaluate the quality of a perceptual space. In the later
sections, we describe mathematical representations of a sound’s
timbre, and then we measure the match between representation
and perception. The sound representation that provides the sim-
plest and most parsimonious description of timbre perception is
the best model for timbre space.



2. Representations of the timbre
2.1. Parameterization of spectral shape

There are many audio representations with different degrees of
abstraction. While a spectrum provides detailed information on
the frequency components of the sound, its arbitrary complexity
makes a direct mapping to human perception difficult.

MFCC is well known as a front-end for speech-recognition
systems [7]. It uses a filterbank based on the human auditory sys-
tem: spacing filters in frequency based on the Mel-frequency scale
to reshape and resample the frequency axis. A logarithm of each
channel models loudness compression. Then a low-dimensional
representation is computed using the discrete-cosine transform
(DCT) [8]. The DCT not only removes high-frequency ripples in
the spectrum, but serves to decorrelate the coefficients. However,
this statistical property is not the same as perceptual orthogonal-
ity. Generally, based on speech-recognition engineering, a 13-D
vector is used to describe speech sounds as a function of time.

LFC is a strawman representation we designed to be similar in
representational ability to MFCC. We start with a linear-frequency
scale and a linear amplitude scale. A 13-D DCT of the normal am-
plitude spectrum reduces the dimensionality of the spectral space
and smoothes the spectrum. Both MFCC and LFC use a DCT to
reduce the dimensionality and decorrelate the coefficients; their
difference lies in the frequency and amplitude warping.

In both representations, a static sound is described by a 13-
D vector that represents a smoothed version of the original spec-
trum. The coefficients are labeled as C and C′, for MFCC and
LFC respectively. The first coefficient from the vector, C0 or C′

0,
represents the average power in the signal (constant in the experi-
ments in this paper), and higher-order coefficients represent spec-
tral shapes with more ripples in the auditory frequency domain. In
a later section we show how to convert these 13-D representations
into their equivalent spectra, and then back into sound.

2.2. Resynthesis

In this study, we choose a 13-D vector and then synthesize sounds
from these coefficients using the inverse transforms of LFC and
MFCC. In both representations much information is lost, or equiv-
alently, many different sounds will lead to equivalent coefficients.
At each step in the transformation we choose the simplest spec-
trum.

We reconstruct the smooth spectrum by inverting the LFC and
MFCC representations. For LFC, the reconstructed spectrum S̃(f)
is the IDCT of LFC vector C′

i. For MFCC, we first compute the
IDCT of the MFCC vector L̃i = IDCT(Ci). Then raising ten
to that power, F̃i = 10L̃i is the reconstructed filterbank output
for channel i. We then assume that F̃i represents the value at the
center frequencies of each channel, and render the reconstructed
spectrum S̃(f) by linearly interpolating values between the center
frequencies.

2.3. Prepared Stimuli

As it is difficult to fully explore a 13-D space, we first chose dis-
crete pairs of coefficients from 2-D MFCC spaces, and measured
our subject’s perceptual judgements in these 2-D spaces. Arbitrary
pairs were studied to give insight into how the representations be-
haved. The four pairs studied are [C3, C6], [C4, C6], [C3, C4],
and [C11, C12].

When forming the two dimensional subspaces, two of the 13
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Figure 1: Describing the concept of corresponding MFCC space
and LFC space. Top: comparison of two spaces is fair when cov-
ering similar region in one representation (MFCC space is trans-
formed into LFC space.) Bottom: When the transformed MFCC
space has much smaller region than LFC parameter space (dotted
rectangular), LFC parameter space is rescaled to match with the
size of LFC-transformed MFCC space (solid grid).

coefficients are chosen as variables and set to non-zero values,
while the others kept constant. For example, the [Cm, Cn] space
has the 13-D parameter vector of

C = [1, 0, · · · , 0, Cm, 0, · · · , 0, Cn, 0, · · · , 0]. (1)

Cm and Cn are quantized and take one of the following four val-
ues, Cm = [0, 1

3M, 2
3M, M ] where M is the maximum value to

be tested in the psychoacoustic experiment. Cn is varied over four
discrete values in the same way as Cm, with the maximum value
N. The parameter vector C is interpreted as MFCC for resynthe-
sis.

Since we have four levels for each of dimensions Cm and Cn,
we form a four by four grid in the 2D space, resulting in a set of
16 stimuli samples with varying spectral shapes.

The ranges of variables, M and N , are defined to be 0.75 in
case of MFCC stimuli as used in our previous experiment. For the
LFC stimuli, we extracted corresponding values M ′ and N ′ by
analyzing the MFCC stimuli as we describe in the next section.

2.4. Designing LFC stimuli space

It is difficult to directly compare two different types of perceptual
spaces such as MFCC and LFC. In general, the sets of sounds will
be different and it is hard to ensure that one set of sounds covers
no more of the perceptual space than the other. To make this com-
parison, we generate sounds using the MFCC vectors, transform



them into sounds using the inverse algorithm described in Section
2.2, and then reanalyze the resulting sound using LFC.

Figure 1 (top) shows the case in which LFC-transformed
MFCC space is bigger than the LFC parameter space. In this case,
the LFC region is smaller than the MFCC region. Taylor’s theorem
suggests we can expect better linearity in a smaller neighboring
area. Therefore we expect LFC will fit better to a linear model. If
MFCC fits better to a linear model even in this case, it reinforces
the probability of MFCC being a better representation of timbre
than LFC.

In our previous work [5, 6], LFC and MFCC sounds covered
very different regions. In that case, it is arguable that the good per-
formance of MFCC timbre representation might have come from
the fact it covered less timbral space than LFC. Therefore, this
time, we want to do a very conservative test, which forces MFCC
being bigger size than LFC by scaling it. This idea is shown as
scaling solution in Figure 1 (bottom).

In this work we transform one set of sounds, created on a grid
in MFCC space, into the LFC space. These 16 MFCC sounds
will not form a regular grid on a two-dimensional plane in LFC
space—they form a 2-D manifold. For this reason, we use Princi-
pal Component Analysis to find the largest two-dimensional LFC
space that describes the sounds, and ignore the other dimensions.
We then scale the LFC coefficients so that they are no bigger than
the transformed MFCC dimensions, as shown in Figure 1 (bot-
tom). This is a very conservative test—we have thrown out many
dimensions of variations, so that we can guarantee that the LFC
space is no bigger than MFCC.

For a fairest comparison, we want to find a 2-D LFC space that
is smaller, in a perceptual space, than the corresponding MFCC
space. We do this in three steps. First we represent the test MFCC
sounds with the LFC algorithm. Second, we find the two LFC
dimensions that have the greatest variation. Third, we select and
scale these two LFC dimensions so that the maximum extent is
equivalent to the maximum extent of the LFC-transformed MFCC
sounds.

The MFCC stimuli sounds are analyzed with the LFC algo-
rithm, providing LFC vector C′′. After analyzing all the 16 MFCC
stimuli samples, we operate a principal component analysis on 16
LFC vectors C′′.

The procedures of a principal component analysis are as
follows[9]. The 13-dimensional mean vector and the 13 × 13 co-
variance matrix are computed for the full data set of 16 vectors of
length 13. The eigenvectors and the eigenvalues are computed, and
then sorted according to decreasing eigenvalue. Call these sorted
eigenvectors e1 with eigenvalues λ1, e2 with eigenvalues λ2, and
so on. Our MFCC stimuli are resolved into two-dimensional LFC
subspaces, having two large eigenvalues.

We observe e1 in order to determine which coefficients of the
LFC vector carry most of the energy, and choose two largest coef-
ficients C′′

m and C′′
n from e1 in order to form a two-dimensional

LFC space. Once we determine the dimensions, we go back to
the C′′ sample vectors and observe the coefficient with the largest
deviation from zero out of 16 samples, and define

M ′ = arg maxC′′
m

(|C′′
m|) (2)

N ′ = arg maxC′′
n
(|C′′

n|) (3)

where C′′
m and C′′

n consist 16 elements of C′′
m and C′′

n from 16
sample vectors of C′′. In order to form a new four by four grid,
M ′ and N ′ become the maximum values of new parameter space
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Figure 2: Eigenvectors of PCA – LFC-transformed MFCC
[C3, C6] stimuli. The first two eigenvectors with their eigenvalues
in the legend. It is visible that LFC C′

2 and C′
4 deliver most of the

energy. These two dimensions are chosen to form a corresponding
2-D LFC space.

Table 1: Corresponding MFCC and LFC spaces for our test. The
LFC spaces are designed to be no bigger than the corresponding
MFCC space.

MFCC LFC
[Cm, Cn] [M, N ] [C′

m, C′
n] [M ′, N ′]

[C3, C6] [0.75, 0.75] [C′
2, C

′
4] [−0.20, 0.32]

[C4, C6] [0.75, 0.75] [C′
3, C

′
4] [−0.29, 0.17]

[C3, C4] [0.75, 0.75] [C′
2, C

′
3] [−0.20,−0.21]

[C11, C12] [0.75, 0.75] [C′
5, C

′
6] [−0.13,−0.12]

for the LFC stimuli in the [C′
m, C′

n] space. The parameter vector
C′ for LFC stimuli is defined in the same way as in Eq. 1, while
C′

m and C′
n are varied over four discrete levels and the others are

kept constant. After designing this four by four parameter grid
in LFC space, the parameter vector C′ is interpreted as LFC for
resynthesis, resulting in comparable 16 LFC stimuli sounds.

Table 2.4 shows the tested pairs of MFCC and relevant LFC
stimuli, and the maximum values in coefficients.

2.5. Representation comparison

A sound can be reconstructed from any point in LFC or MFCC
space. Figure 3 shows an array of spectra as we vary the C3 and
C6 components of the vector, keeping all other coefficients but the
C0 component equal to zero. With both C3 and C6 coefficients
set to zero, and C0 = 1, the spectrum is flat. As the value of C3

increases, going down the columns, there is a growing bump in the
spectrum at DC and in the mid-frequencies. As the value of C6

increases, going across rows, three bumps increase in size. Figure
4 shows the corresponding array of stimuli for LFC extracted from
the principal component analysis of the MFCC stimuli.
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Figure 3: An array of spectra generated for a 2-D range of MFCC
coefficients. The column show C3 ranging from 0 to 0.75, the rows
show C6 ranging from 0 to 0.75.

2.6. Additive synthesis

The voice-like stimuli used in this study are synthesized from the
spectrum derived in Section 2.2 using a source-filter model of
speech. The source is an impulse train with the desired pitch. The
filtering was implemented using additive synthesis. The amplitude
of each harmonic component is scaled based on the desired spec-
tral shape. The pitch, or fundamental frequency, f0, is 220 Hz,
the frequency of the vibrato v0 is 6 Hz, and the amplitude of the
modulation V is 6%. Using the reconstructed spectral shape S̃(f),
with the harmonics number n, the synthesized sound is

s =
X

n

S̃(n · f0) · sin(2πnf0t + V (1 − cos 2πnv0t)) (4)

3. Experiment
We measured the perceptual distance for several sets of timbre pa-
rameters by asking subjects for their subjective evaluation of the
difference between two sounds in the prospective representation.

A trial consisted of two stimuli, where the first is a reference
sound and the second is a trial sound, with no pause between the
paired sounds. The reference sound was kept identical through the
entire experiment. It has a flat spectrum, all the 13 coefficients are
zero except C0 (i.e. [Cm, Cn] = [0, 0].) The second element of
each pair, the trial sound, was varied in each presentation pair.

For each of the ten sets of sounds we played five examples
to help the subjects understand the types and range of sounds that
appear on the main experiment. In the main experiment, a distance
measurement is recorded after playing a subject a pair of sounds.
The subject was asked to rate the degree of similarity between pair
elements on a scale of one to ten, where one is identical and ten
is very different. The 16 stimuli in a set were presented to the
subjects in a random order.

Twelve students with ages between 20 – 35 years old partici-
pated in the experiment. The stimuli were presented to the subject
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Figure 4: An array of spectra generated for a 2-D range of LFC
coefficients. The column show C′

2 ranging from 0 to -0.20, the
rows show C′

4 ranging from 0 to 0.32.

using a headset in a quiet office environment.

4. Analysis method
There are two steps in the analysis procedures. In the first step, we
fit the individual distance judgments to a simple Euclidean model.
We compute the residual from the model to evaluate the perfor-
mance of the representations (LFC and MFCC) on each subject.
In the second step, we computed the mean of the residuals and its
standard error for each of ten sets in order to evaluate the represen-
tation.

4.1. Individual Euclidean model fitting

For a two-dimensional test as performed, the Euclidean model pre-
dicts the perceptual distance, d, that subjects reported in the exper-
iment

d2 = ax2 + by2 (5)

where x is one of the 13 coefficients (e.g. C3) and y is another
coefficient (e.g. C6). Note that this is a linear equation in the
known quantities d2, x2 and y2. Multidimensional linear regres-
sion is used in order to test the fit of perceptual data to a Euclidean
model. The estimation of the regression model is done by the
least squares method, using the left inverse (pseudo-inverse) of the
matrix, which guarantees the minimum-error linear estimate. The
residual of the linear estimation is:

dres =
1

16

X

x, y

˛̨
˛ d − d̂

˛̨
˛ (6)

where d̂ is the estimated distance by the linear regression model.

4.2. Integrating the individual timbre space of the subjects

Given the model residuals for individual subjects, the mean of the
residuals is calculated for each representation
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Figure 5: Model residuals and standard errors comparing MFCC
and LFC for four sets of corresponding subspaces.

d̄res =
1
N

NX

i=1

dres,i (7)

where N is the number of subjects. The standard error σMean

is calculated as follows:

σMean =

qPN
i=1 |dres,i − d̄res|2

N
(8)

By comparing the mean of the residuals and the standard error
of each representation, we decide which representation is a better
model of human perception.

5. Results
Figure 5 compares LFC and MFCC in terms of each representa-
tion’s ability to model a human’s perception of timbre space. Each
adjacent LFC and MFCC subspaces, e.g. [C′

2, C
′
4] and [C3, C6],

[C′
3, C

′
4] and [C4, C6], and so on, are the corresponding sets of

sounds with relevant spectral changes. On average, either timbre
space predicts the perceptual judgment with a mean error of 1.32
point on a 10-point scale. In all cases, the MFCC representation
performs as a better model for timbre space perception than the
LFC representation, although the difference between the first pair
of subspaces [C′

2, C
′
4] and [C3, C6] is smaller than the other pairs.

In this experiment, we designed LFC parameter space so that
LFC perceptual space would have similar or more linearity than
MFCC, as described in Section 2.4. The timbral spaces covered
by LFC stimuli are strictly constrained to be smaller than that of
MFCC stimuli. As a result, the spectral deviations for the LFC
stimuli are smaller than MFCC parameter settings, providing an
advantage to LFC stimuli. The LFC model covers smaller spectral
region, and is more likely to behave linearly. Yet we observe that
MFCC performs better than LFC with consistency and robustness,
which suggests that MFCC is the better representation for human
timbre perception.

6. Conclusions
In this paper we have articulated a set of criteria for evaluating a
timbre space, described two representations of timbre, measured
subject’s perceptual distance judgments, and found that a model
for timbre based on the MFCC representation accounts for the per-
ceptual variance.

This result is interesting because we have shown an objective
criteria that describes the quality of a timbre space, and established
that MFCC parameters are a good perceptual representation for
static sounds. Previous work has demonstrated that MFCC (and
other DCT-based models) produce representations that are statisti-
cally independent. This work suggests that the auditory system is
organized around these statistical independences and that MFCC
is a perceptually-orthogonal space. The procedure described in
this paper does not give a closed-form solution to the timbre-space
problem. All we can do is test a representation and see if it is par-
simonious with perceptual judgments. This paper is the first step
towards a complete model of timbre perception.

In this work, we constrained LFC stimuli to have smaller de-
viation than MFCC, in order to insure the tested stimuli stay in a
corresponding group of timbres. The parameter for the LFC was
carefully constrained using a statistical approach so that LFC per-
ceptual space is similarly, or even more likely, to be linear when
compared to MFCC space. The experiment, however, proved that
MFCC is still a better representation which is orthogonal to our
perception, even in this disadvantageous experiment condition for
MFCC.

Most importantly, the timbre representations we tested here
are static; sounds are not. Many timbre models find that onset
time, for example, is an important component of timbre percep-
tion. But the criteria (linearity and orthogonality) we described
here are important as we add features to the timbre space.

Finally, we have not begun to understand the contextual differ-
ences involved in timbre for sound perception [10]. However, this
work addresses the underlying representational issues.
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