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ABSTRACT

Parsing complex acoustic scenes involves an intricate inter-
play between bottom-up, stimulus-driven salient elements in
the scene with top-down, goal-directed, mechanisms that shift
our attention to particular parts of the scene. Here, we present
a framework for exploring the interaction between these two
processes in a simulated cocktail party setting. The model
shows improved digit recognition in a multi-talker environ-
ment with a goal of tracking the source uttering the highest
value. This work highlights the relevance of both data-driven
and goal-driven processes in tackling real multi-talker, multi-
source sound analysis.

Index Terms— Attention, Saliency, Auditory Scene
Analysis, Cognition, Digit Recognition

1. INTRODUCTION

This paper describes a model of attention-driven auditory
scene analysis (ASA). ASA is the process of listening to a
complicated auditory environment, a cocktail party is the
canonical example, and being able to select and understand
a single talker. Due to its significance in both perceptual
and engineering sciences, interest in tackling the ASA phe-
nomenon has prompted multidisciplinary efforts spanning
the engineering, artificial intelligence and neuroscience com-
munities. In general, most current work on auditory scene
analysis takes one of two simplified approaches. The first
approaches to computational auditory scene analysis (CASA)
use an exclusively bottom-up approach. Low-level percep-
tual signals are grouped using simple rules such as common
onsets or modulations [1]. These systems rely heavily on the
conspicuity and salience of stimulus elements; and perform
reasonably well in simple and well controlled scene analysis
conditions. More recent systems take a more sophisticated
approach by including expectations in the analysis. These
systems have simple models of what a talker sounds like [2],
or what was said before [3]. In this paper we describe a third
approach based on a user’s goals.

We are interested in saliency and attention because of the
interplay between bottom-up and top-down processes. We de-
fine saliency to be a bottom-up signal that tells the brain that

Fig. 1. The goal of the attention-driven scene analysis system
is to recognize the highest value sound.

something novel or interesting has happened. Its role is to
alert the subject, perhaps shifting the focus of attention. Top-
down attention, on the other hand, is a goal-directed signal
based on the desires, needs, and limitations of the animal.

The role of attention in auditory scene analysis is unset-
tled. It is certainly true that attention can affect stream seg-
regation. For instance, the ability to switch at will between
hearing certain tone sequences as one or two streams can be
thought of as an effect of attention, but that leaves the ques-
tion of whether attention is necessary for streaming (e.g., [4]).
The bulk of the literature suggests that at least some forms of
streaming occur in the absence of top-down attention, in what
is termed “primitive” stream segregation [5], and bottom-up
saliency may play a role here. Streaming may also be thought
of as a process that facilitates attention (rather than only vice
versa) in that it only becomes possible to pay exclusive at-
tention to tones of a single frequency if they are successfully
segregated from other tones in the sequence. In the case of al-
ternating tone sequences, van Noorden [6] defines two bound-
aries, the fission boundary and the temporal coherence bound-
ary. The fission boundary defines the frequency difference (or
other dimension) below which segregation is not possible; the
temporal coherence boundary defines the point above which
integration is not possible. The area in between these two
boundaries could be the region in which attention plays a role
in determining whether we hear one or two streams. These
kinds of models have also been studied in vision [7].

We postulate that attention has two purposes: selection
and efficiency. We want to attend to a single talker because
he is telling us something that we need to know—this is selec-
tion. Furthermore, attention is important because our brains
have limited computational ability and (ignoring divided at-
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tention) we can only process the speech from one talker at a
time. We are not arguing, however, that computers should be
limited in the same way. It might be desirable to use a com-
puter to simultaneously separate and decode all talkers [8].
But it is important to note the different approaches.

This paper describes in Section 2 our theory for attention-
driven auditory scene analysis. Section 3 describes the model
we built and we describe its performance in Section 4. As this
is an initial attempt to build a model of attention and saliency,
we emphasize open questions in Section 5.

2. THEORY AND MODEL

In everyday acoustic scenes, some sounds are important, but
most are not. In general the information content of a signal
is hard to judge. There are many different factors, most of
which we can’t hope to understand or model. Here, we pos-
tulate a goal of an organism is to select and understand the
highest-value audio in a complex auditory environment. Fig-
ure 1 describes a simple scenario explored in this study. Here
a subject listens to speech signals from two different talkers,
a male and a female at different positions. Our goal is not to
model the semantic content in natural language, but rather to
explore the role of bottom-up saliency and top-down goals in
mediating scene analysis. Our talkers utter simple two-digit
numeric “sentences” that have a direct semantic meaning (98,
the higher value, is more important than 32). Our goal is to
separate and understand the highest value sentence over time.
We use saliency to tell us when something interesting is hap-
pening, perhaps new sound from a different talker. It is up to
a “cognitive” layer to decide, based on expectations, whether
we should shift our attention to this new signal.

In our simulated cocktail party a male and a female talker
speak two-digit sentences. The ten possible words from
each talker were drawn from the TIMIT database and do
not change during the experiment. Each sentence ends with
an even digit so that we can more easily parse the sentence
structure. The two streams of digits overlap approximately
59% of the time. Played binaurally, human subjects with
native English skills can attend to either talker and perfectly
understand either talker, albeit with some difficulty. Played
monaurally, the task is very difficult, if not impossible.

In this paper we demonstrate an attention-driven model
and measure its performance using several different cognitive
strategies. One simple strategy is to always pay attention to
a single talker. A second possibility is to always shift atten-
tion to the new talker whenever a salient event occurs—we
call this the distracted model. Finally, the best approach we
describe is a “smart” approach which looks at the speech re-
ceived so far, and then judges whether the new talker is likely
to be more valuable, by virtue of giving us a higher-value sen-
tence.
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Fig. 2. A block diagram of the attention-driven scene analysis
system.

3. IMPLEMENTATION

We built the system shown in Fig. 2. It has five primary
components: saliency, cognition, attention, separation and
recognition. The system is fully developed, although there
are many simplifications, because we want to emphasize the
attention/saliency tradeoff in CASA.

Saliency is defined as something that is noticeable or im-
portant. There are models of auditory saliency [9, 10] but they
are largely straightforward transformations of visual saliency
models to audition. The visual saliency models have been
successful because they have been validated with eye-tracking
data, which is a good indication of attention. Unfortunately,
there is no similar indication of auditory attention. While
the auditory salience models have been validated with simple
sounds (tones or speech) neither was sufficient for the two-
talker situation we are testing. Thus we implemented a very
simple model of binaural saliency.

Our binaural saliency model is based on a VLSI spike-
based implementation of cochlear interaural-time delay (ITD)
processing [11]. We play the male and female speech through
two different speakers separated by 53 cm. The baseline of
the cochlear board’s two microphones is 25.5cm. from the
speaker baseline, giving a 90 degree difference between the
two talkers. We analyze the sound from each analog-digital
VLSI cochlea into 64 bandpass channels. Neural spikes for
each channel, c, and from each ear are generated by the VLSI
system and sent to a computer for analysis. These spikes are
cross-correlated and summed across channels, in software, as
a function of relative time delay over time, t, to obtain the
ITD signal, R(τ, t). This ITD signal tells us from which di-
rections we are receiving sound energy. We turn this into a
binaural saliency signal by taking the temporal derivative of
the cross-correlation: S(τ, t) = ∂R(τ, t)/∂t. Peaks in this
saliency signal represent binaural onsets, which is a simple
representation of salience.

Results from our binaural salience model are shown in the
three images of Fig. 3. The top image shows the ITD signal
for 16 different directions (or time delays) over time. There
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Fig. 3. ITD signals, salience and digit recognition results for one 20-second trial using the “smart” cognition model. Each bar
in the bottom graph shows the last recognized digit; the start of the bar represents the end of the spoken digit.

is significant overlap between the talkers. The middle plot
shows the output of the binaural saliency model, for just the
two most prominent ITD channels. Note there is a salience
peak at the start of each digit. Finally the bottom plot summa-
rizes the recognition and attention results from a single trial.

Cognition is a difficult thing to model. As we are only
interested in the tradeoff between saliency and attention, we
used simple cognitive models to illustrate the concepts. Thus
we measured the performance of single-talker, distracted, and
smart approaches. Our “smart” approach is still relatively
simple. If the sentence received so far is likely to be a low
value, we switch as soon as a salient event happens in the
opposite channel. This judgement is based on the digits rec-
ognized so far. If the first digit of the current sentence is five
or higher we make the bet that the sentence from the current
talker is likely to be good and we want to keep our attention
on the current talker. Conversely, if we have not received any-
thing or we have only recognized a low digit at the start of the
sentence we make a bet and switch.

Our top-down attention model is simple. We attend to
only one talker at a time, either the male on the left, or the
female on the right. Humans have some ability to divide their
attention, although dual task experiments often show there are
bottlenecks that limit overall performance. In this study we do
not attempt to model divided attention. Our subject listens to
one talker until told to switch to the other.

Our original goal was to use the ITD signal to select the
active binaural channels and then use simple beam forming to
select the appropriate audio. Unfortunately this approach is
only going to give us at best a 3 dB advantage, when the two
signals are constructively added. Thus in this paper we bypass

this problem by feeding the recognition stage directly with
either the left or the right audio signal and the recognition
system gets perfect audio on which to perform its actions.

Our speech recognition system is based on speaker- and
digit-dependent template matching. An audio signal from the
separation system is analyzed with MFCC and stored. At each
frame (100 Hz) we measure the Euclidean distance between
the most recently calculated MFCC coefficients and precom-
puted models of each talker’s digits. We recognize a digit
when the error (normalized by the length of the target utter-
ance) is lower than a threshold. Recognition of either talker,
under these idealized circumstances, is perfect, except when
the attention switches in the middle of a digit.

4. TESTING

We tested our system with 200 trials, each trial consisting of
20 two-digit sentences from two overlapping talkers. The pri-
mary task was to correctly identify the highest (numerically)
valued sentence. We measured both the speech-recognition
error rate, and whether the subject got the right answer in our
cognitive test.

A sentence is recognized only if the constituent digits are
correctly recognized. Given the received sentences it is easy
to pick the highest value. Human subjects reported that they
could often recognize the highest values but could not recall
who said it. We, thus, ignored the gender of the talker in
scoring our tests.

Figure 4 shows our recognition results for several dif-
ferent variations of our experiment. The distracted result is
lowest because the attention model switches immediately as
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Fig. 4. Recognition results for five different cognitive mod-
els. We show the rate at which the highest-value sentenced is
identified correctly.

soon as there is a salient event in the unattended direction—
the recognition system almost never sees an entire sentence.
The smart model works much better because once it has rec-
ognized a big digit at the start of the sentence it continues to
attend to that direction. The two “smart” alternatives shown in
the figure represent variations where we only allow switches
to occur after the indicated number of seconds. Thus “Smart
0.5” switches the attentional focus only after at least 0.5 sec-
onds. Finally, the best results are for the single-channel atten-
tion model—always pay attention to one speaker. This high
result is an artifact of our experimental paradigm. Since there
is a very restricted vocabulary, the same high-valued sentence
is often spoken by both talkers. With a larger range of possi-
ble numbers the best the single-channel model should achieve
is 50% accuracy.

5. FUTURE WORK

Our goal is not to show that our brain model is smarter than
yours (it might be :-) but instead to describe the features of a
model of auditory scene analysis based on saliency and atten-
tion. Doing this work we found several scientific areas where
more study is needed, and thus our model has shortcomings.

Most importantly, the salience of real-world sounds is dif-
ficult to measure and model. Kayser’s model [9] picks out
single tones well, but our audio environment is much more
complicated, including, for example, multiple harmonics in a
pitched voice. Kalinli’s model includes pitch but is primarily
tested by measuring stress in spoken English sentences [10].
The binaural model used here is largely an onset detector, and
not nearly as sophisticated as we would like. None of the
models we know of allow higher levels of the brain to specify
which sounds should be considered most salient.

Separation remains an unsolved problem. We were struck
at the difficulty of recognizing the speech when the chan-
nels were summed and we tried to listen monaurally to either
talker. Furthermore, simple beam forming based on delay and
add with the two ear signals was not sufficient. The human

auditory system has an amazing ability to understand speech
sounds with different directions of arrival.

Perhaps the biggest unknown in our model is how saliency
and attention really interact. We chose a simple model to il-
lustrate the concept, but clearly humans use a much more so-
phisticated mechanism. A list of effects that remain to model
includes: divided attention, perhaps based on selective listen-
ing; the tradeoff between saliency and attention; expectations
that some signals are more likely to be informative; historical
information; and the role of visual signals in the saliency and
understanding of a cocktail party.
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