
ABSTRACT
This paper describes a system for connecting sounds and words
in linked multi-dimensional vector spaces. The acoustic space is
represented using anchor models and partitioned using agglomer-
ative clustering. The semantic space is modeled by a hierarchical
multinomial clustering model. Nodes in one space are linked by
probabilistic models to the other space. With these linked models,
users retrieve sounds with natural language, and the system
describes new sounds with words.

1. THE PROBLEM
This paper describes a method of connecting sounds to words,
and words to sounds. Given a description of a sound, the system
finds the audio signals that best fit the words. Thus, a user might
make a request with the description “the sound of a galloping
horse,” and the system would respond by presenting recordings
of a horse running on different surfaces, and possibly of musical
pieces that sound like a horse galloping. Conversely, given a
sound recording, the system describes the sound or the environ-
ment in which the recording was made. Thus, given a recording
made outdoors, the system says confidently that the recording
was made at a horse farm where several dogs reside. 

We build a system that has these functions, called SAR
(semantic–audio retrieval), by learning the connection between a
semantic space and an auditory space. Semantic space maps
words into a high-dimensional probabilistic space. Acoustic
space describes sounds by a multidimensional vector. In general,
the connection between these two spaces will be many to many.
Horse sounds, for example, might include footsteps and neighs.   

Figure 1 shows one half of SAR; how to retrieve sounds from
words. Annotations that describe sounds are clustered within a
hierarchical semantic model that uses multinomial models. The
sound files, or acoustic documents, that correspond to each node
in the semantic hierarchy are modeled with Gaussian mixture
models (GMMs). Given a semantic request, SAR identifies the
portion of the semantic space that best fits the request, and then
measures the likelihood that each sound in the database fits the

GMM linked to this portion of the semantic space. The most
likely sounds are returned to satisfy the user’s semantic request.

Figure 2 shows the second half of SAR; how to generate
words to describe a sound. SAR analyzes the collection of sounds
and builds models for arbitrary sounds called anchors. All sounds
in the database are described by how well they are modeled by
these anchor sounds. This approach gives us a multidimensional
representation of any sound, and a distance metric that permits
agglomerative clustering in the acoustic space. Given an acoustic
request, SAR identifies the portion of the acoustic space that best
fits the request. Each portion of the acoustic space has an associ-
ated multinomial word model, and from this model SAR gener-
ates words to describe the query sound.

The SAR algorithm is illustrated with a closed set of acoustic
and semantic documents about animals. Six CDs (#12, 30, 34, 35,
37, 38) from the BBC Sound Effects Library contained 215 sepa-
rate tracks, with 330 minutes of audio recordings of animal
sounds. In addition, the concatenated name of the CD (e.g.,
“Horses I”) and track description (e.g., “One horse eating hay and
moving around”) form a unique semantic label for each track.
The audio from the CD track and the liner notes form a pair of
acoustic and semantic documents used to train the SAR system.

2. THE EXISTING SYSTEMS 
There are many multimedia retrieval systems that use a combina-
tion of words and/or examples to retrieve audio (and video) for
users. 

An effective way to find an image of the space shuttle is to
enter the words “space shuttle jpg” into a text-based web search
engine. The original Google system did not know about images,
but, fortunately, many people created web pages with the phrase
“space shuttle” that contained a JPEG image of the shuttle. More
recently, both Google and AltaVista for images, and Compuson-
ics for audio, have built systems that automate these searches.
They allow people to look for images and sound based on nearby
words. The SAR work expands those search techniques by con-
sidering the acoustic and semantic similarity of sounds to allow
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Figure 1: SAR models all of semantic space with a hierarchical
collection of multinomial models, each portion in the semantic
model is linked to equivalent sound documents in acoustic space
with a GMM.
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Figure 2: SAR describes with words an audio query by partition-
ing the audio space with a set of hierarchical acoustic models and
then linking each set of audio files (or documents) to a probabil-
ity model in semantic space.
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users to retrieve sounds without running searches on the exact
words used on the web page.

Many existing image- and audio-retrieval systems perform
query by example [3]. Given an example of a sunset, these sys-
tems can find other images that have similar properties. These
systems are difficult to use unless the user formulates the query
using exactly the same features used to describe the original
image. The queries often fail because the underlying feature
space does not fit human expectations: Humans do not think
about images in terms of their quantitative texture metrics.

Barnard suggested a system [1] that is closest to SAR. He
used Hofmann’s hierarchical clustering algorithm [2] to build a
model that combined words and image features to create a single
hierarchical model that spanned both semantic and image fea-
tures. He demonstrated the effectiveness of coupled clustering for
an information-retrieval task and argued that the words written by
a human annotator describing an image (e.g., “a rose”) often pro-
vide information that complements the obvious information in
the image (it is red).

SAR improves on two aspects of Barnard’s approach. First,
the semantic and image features do not have the same probability
distributions. Hofmann’s algorithm assumes that image features
can be described by a multinomial distribution, while a Gaussian
is probably more appropriate. Second, and perhaps more impor-
tant, there is nothing in Hoffman’s algorithm that guarantees that
the features used to build each stage of the model include both
semantic and image features. Thus, the algorithm is free to build
a model that completely ignores the image features and clusters
the “documents” based on only semantic features. 

The audio-retrieval problem is easier than image retrieval for
two reasons. First, we do not have to solve the foreground–back-
ground problem (yet). People who want a picture of a tiger usu-
ally do not care whether the tiger is surrounded by grass, sand,
water, or even a sunset. Fortunately, in the audio world, we can
often assume that only one sound is present at a time. Second, it
is difficult to know which are the features that best characterize
an image. 

3. THE FEATURE SPACES
The key to SAR is choosing a set of features that allows us to talk
about mathematical spaces for sounds and semantics. In Section
3.1, we consider what semantic features are, how we describe the
position of a concept in semantic space, and how we measure the
distance between two concepts. Section 3.2 describes the same
procedure for sounds. In both cases, we have a rich foundation of
prior work on which to build.

3.1 The Semantic Space
SAR uses multinomial models to represent and cluster a collec-
tion of semantic documents. The likelihood that a document
matches a given multinomial model is described by ,
where  is the probability that the word  occurs in this type of
document, and  is the number of times that word  is found in
this document. The set of probabilities, , is different for differ-
ent types of documents. Thus, a model for documents about cows
will have a relatively high probability for containing “cow” and
“moo,” whereas a model for documents that describe birds with
have a high probability of containing “feather.”

SAR uses the same cluster abstraction technique used in Bar-
nard’s work, but only applies it to the semantic data. Cluster

abstraction builds a hierarchical collection of multinomial models
to describe a set of documents. This hierarchical model (Figure 3)
assumes that an unknown process generates documents using two
hidden variables. The first hidden variable assigns each document
to one of K clusters at the leaves of the tree, where each cluster
describes one type of document (e.g., “galloping”). The second
hidden variable describes how words are generated by a hierar-
chy of word-probability models. Common words, such as “the”
and “a,” are generated with the same probability distribution for
all documents in the collection and are represented by a single
distribution at the top of the tree. The words that distinguish the
broad classes in the collection are described by probability distri-
butions slightly lower in the tree. These different probability dis-
tributions allow us to distinguish the different types of documents
and to assign different documents to different points in semantic
space. Finally, the lowest level of the hierarchy represents words
that are specialized to just a few documents in the collection. The
process generates any one document in the collection by picking
a cluster (which determines the semantic content), and then gen-
erates each word by picking a level in the hierarchy and then
picking the specific word from the corresponding probability dis-
tribution at that level and above. SAR uses these models to parti-
tion and recognize portions of the semantic space.

The text used to describe one track of a CD is called a docu-
ment. SAR uses the PORTER stemmer [4] to remove common
suffixes from the words, and deletes common words on the
SMART list [5] before further processing. After this preprocess-
ing, there were 414 unique stemmed words. The 215 documents
were grouped into 32 clusters, and there were 63 nodes in the tree
that described the probability of a word given a position in the
hierarchy. In effect, a 414-dimensional vector (the multinomial
coefficients) describes a point in semantic space, and SAR parti-
tions the space into a hierarchy of 63 overlapping regions.

Hofmann’s approach clusters all documents in the training
collection as leaf nodes. All nodes in the hierarchy above a leaf
contribute probability distributions for words in a training docu-
ment. This structure is appropriate, since all of the sound labels
that SAR uses to build the hierarchical model are specific. User
queries are not required to be so specific. Thus, if the user
requests “horse” sounds, many clusters of documents satisfy this
request and a document described by only high-level nodes in the
tree is the best match for the query. This work extends Hof-
mann’s work by allowing less specific documents to be generated
using only the higher-level nodes in the tree.

3. 2 The Acoustic Space
Sound is difficult to analyze because it is dynamic. The sound
that we describe as that of a horse galloping is constantly chang-
ing at time scales in the hundreds of milliseconds; a hoofstep is
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Figure 3: The cluster abstraction model calculates a hierarchical
set of multinomial models ( )to generate clusters of documents.ax



followed by silence, and then by another hoofstep. Yet we would
like a means to transform the sound of a galloping horse into a
single point in an acoustic space. This section describes acoustic
features that allow us to describe each sound as a single point in
acoustic space, and to cluster related sounds.

Conventional acoustic features for speech recognition and for
sound identification use a short-term spectral slice to characterize
the sound at 20-ms intervals. A combination of signal-processing
and machine-learning calculations endeavors to capture the
sound of a horse as a point in auditory space.

I measured the efficacy of a number of different features by
testing them in a 10-way discrimination test. I manually sepa-
rated many of the BBC sounds into 10 classes that were each
clearly related to one animal.   For each class, a GMM was
trained to model the probability of that classes’ features. The
abilities of the GMMs to learn the class feature probabilities and
to predict the class of test sounds are measures of how well the
features discriminate among the 10 classes of sound.

The best feature in this test combined three signal-processing
steps (Figure 4). Mel-frequency cepstral coefficients (MFCC) [6]
decompose each signal into a broad spectral channels and com-
press the loudness of the signal. Then seven frames of data—
three before the current frame, the current frame, and the three
frames following the current frame—are stacked together.
Finally, linear discriminant analysis (LDA) [6] uses the intra- and
inter-class scatter matrices for the labeled data to project the data
on the optimum dimensions for linear separability. GMM recog-
nizers (10 element, diagonal covariance) gave a 35% error on the
20% of the data that was held out for testing.

New features, designed to represent the long-term temporal
properties of the sounds, were not successful at discriminating
the 10 classes of data. These new features—which used histo-
grams, correlation and small-order all-pole models after the
MFCC calculation—do not change when the feature calculation
is shifted 20 ms. This property is clearly not true for the MFCC-
LDA features that provided the best discrimination. The MFCC-
LDA feature during a footstep is different from its value in the
silence between steps.

The success of the MFCC-LDA representation is due to the
multi-centroid GMM that formed the discrimination system. One
of the Gaussians might capture the start of the footstep, a second
captures the steady-state portion, a third captures the footstep’s
decay, and, finally, a fourth captures the silence between foot-
steps. The temporal order is ignored by a GMM model.

SAR converts the MFCC-LDA plus GMM recognition sys-
tem into an auditory space by using model likelihood scores to
measure the closeness of a sound to pretrained acoustic models.
These known sounds and their GMMs are called anchor models
[7]. The negative log-likelihood that a sound fits a model is a
measure of the distance of the new sound from the test model. By
this method, we can use the distances to the GMMs for 215 pro-
totype sounds as the measure of the position of the sound in a
215-dimensional acoustic space. 

I built a 10-center (diagonal covariance) GMM to model each
anchor sound. Each of the 215 sounds was then evaluated with
each of the 215 acoustic models. Figure 5 shows the resulting

log-likelihood per frame (L). Each model did a good job of
matching the sound on which it was trained (the diagonal). The
sounds that came from the same CD, and were often from the
same animal, are the larger, light squares along the diagonal with
lower error.

SAR uses agglomerative clustering [8] to group nearby
sounds in acoustic space into larger clusters. It computes the dis-
tance between each pair of training sounds -[L(model a, sound b)
+ L(model b, sound a)]/2. At each step, agglomerative clustering
grows another layer of a hierarchical model by merging the two
remaining clusters that have between them the smallest distance.
SAR uses “complete” linkage, which uses the maximum distance
between the points that form the two clusters, to decide which
clusters should be combined. 

4. THE MODEL LINKAGE
Linking the acoustic and semantic spaces is straightforward given
the hierarchical representations of the spaces.

Each node of the acoustic hierarchy represents multiple simi-
lar sounds. SAR represents the collection of sounds below a node
using a GMM, forming a new super-anchor model. In addition,
each sound that contributes to a node has a semantic document
that describes the sound. We can use this collection of documents
to build a (single mixture) multinomial model that predicts the
most likely words used to describe this cluster of sounds. The
probability of word i is given by , where  is
the number of times the word is seen in this collection of docu-
ments, and  is the number of words in the cluster.

Given a sound, SAR consults the ensemble of anchor models
that partition the acoustic hierarchy. Sometimes, one of the leaf
nodes is the best match for the sound. SAR simply returns the
words that describe the prototype. 

More often, the sound will match an intermediate node in the
hierarchy: The sound is a mixture of two different sounds, or
somehow falls in between two or more acoustic models. The
sound is best described by the most likely words from the com-
bined multinomial model at that level in the hierarchy.

In the semantic space, each leaf and all intermediate nodes
define a set of multinomial models that describe documents at
that level. At each node in the semantic hierarchy, there is a well-
defined set of documents that contribute words to that aspect of
the semantic model. We collect all those documents, then train a
10-element GMM with all the corresponding audio CD tracks.
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Figure 4: The acoustic signal processing chain. Arrows are
marked with the signal’s dimensionality. All but the last are sam-
pled at 50Hz. The final output is sampled once per sound.
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Figure 5: Log-likelihood of all sounds given their GMM models.
Sound tracks are in numerical order.
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Given a semantic query, SAR queries each multinomial
model and determines which model is most likely to have gener-
ated that set of words. Then it uses the corresponding GMM to
query all of the sounds in the acoustic database, and it returns the
most likely sounds.

5. THE RESULTS
It is instructive to look at the results of several queries. A search
in the semantic space for the words “horse trot” is translated by
the semantic model into a query for aspect 7 in the third level
from the top of the hierarchy (see Figure 6). This aspect generates
a large number of words, of which the most common words are
(words as they are stored in the database, after stemming): hors
(p=0.65), walk (p=0.10), trot (p=0.07), track (p=0.066), tarmac
(p=0.03), approach (p=0.02), canter (p=0.02), pass (p=0.01).

Each aspect of the semantic model defines an acoustic GMM
that describes sounds that fit those words. All sounds in the data-
base were evaluated with the GMM connected to aspect 7; the
most likely sound tracks for the query are shown in Table 1.  

It is instructive to look at how the system does when translat-
ing from audio to semantic and then back to audio again. This
back-and-forth test is often used with machine-translation sys-
tems to show how difficult it is to generate reasonable results
from language-specific idioms. I started with sound track 34.21
which is described as “Livestock I Cattle passing on tarmac,
about 30–50.” A semantic query garners the response that aspect
7 is most likely to generate this semantic document. The most
common words for this semantic aspect are cattl (p=0.25), live-
stock (p=0.25), pass (p=0.25), tarmac (p=0.25). Returning to the

acoustic domain, this semantic aspect is most likely to generate
the CD tracks shown in Table 2.

6. THE CONCLUSIONS
This paper has described a system for converting sounds and
words into points in separate multi-dimensional vector spaces.
Using hierarchical clustering ideas, SAR group the points and
build models that link one domain to the other.

There are two shortcomings of the present work. First, this
paper provides only a proof of concept. We need to test SAR with
a larger data set—with separate training and testing data—to
quantify the efficacy of this approach. Second, choosing only
acoustic and semantic clusters with the largest score limits query
results to well-defined locations. A means of interpolating
between nodes will allow results that fit the user’s query more
precisely.
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Table 1: Acoustic results from semantic query “horse trot”
L Track Label

-5.26 37.37 Horses I One horse approaches at walk
-5.33 37.22 Horses I One horse walks past through grass
-5.37 37.12 Horses I One horse walks past on tarmac
-5.46 37.13 Horses I One horse canters past on grass
-5.49 37.36 Horses I One horse approaches at walk, on rough 

track
-5.55 37.38 Horses I One horse walks past on rough track
-5.62 37.40 Horses I One horse trots past on rough track
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Figure 6: Probabilities of four semantic queries. The size of the
dot shows the relative probability for different aspects of the clus-
ter abstraction model.

Table 2: Result of back-and forth query to track 34.21
L Track Description

-4.9 34.21 Livestock I Cattle passing on tarmac, about 30–50
-5.2 38.16 Horses II One horse working in an indoor school
-5.7 35.17 Livestock II Cattle TB tested in yard
-6 37.16 Horses I One horse galloping through field
-6.1 37.13 Horses I One horse canters past on grass
-6.1 37.14 Horses I One horse trots past on grass


