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Solving Demodulation as an Optimization Problem
Gregory Sell and Malcolm Slaney, Fellow, IEEE

Abstract—We introduce two new methods for the demodulation
of acoustic signals by posing the problem in a convex optimiza-
tion framework. This allows the parameters of the modulator and
carrier to be explicitly defined as constraints in an optimization
problem. We first show the theory used to define the demodula-
tion relationship within the rules of convex programming. Then,
for the two approaches introduced, we derive specific cost func-
tions and constraints to solve for modulators specifically motivated
by perceptual rules. The methods described here perform well with
simple, harmonic, and stochastic carriers, and also in the presence
of noise.

Index Terms—Modulation, optimization methods.

I. INTRODUCTION

D EMODULATION divides a signal into its modulator
and carrier . In this context, the original signal

is the product of the two components

(1)

The modulator is typically defined as a lower frequency
signal, and the carrier is a higher frequency signal.

Demodulation, originally just used in radio communications,
has become a more interesting problem because of a number
of uses in speech analysis and processing. Several researches
have used demodulation, albeit with limited success due to the
shortcomings of the Hilbert approach [7], [16], to separate the
spectral and fine time-structure in a speech signal [17], [19],
[10]. They recombine these components to create so-called chi-
maeric sounds. Other uses of demodulation include speech en-
hancement [15], speech recognition [12], source separation [1],
[11], and hearing devices [15].

The main hurdle for any demodulation algorithm is the math-
ematical fact that there are an infinite number of legitimate mod-
ulator–carrier pairs. It is the same problem as solving
for and , because without further constraints, there is no way
to limit the solution.
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The ambiguity of demodulation can be illustrated with a
simple example—the product of 5-, 50-, and 150-Hz sinusoids

One very reasonable decomposition defines the modulator as the
5-Hz sinusoid, and the rest as the carrier

An equally reasonable decomposition defines the carrier as the
150-Hz sinusoid, and the rest as the modulator

Both of these decompositions are demodulations, and, mathe-
matically speaking, they are equally correct. There are infinite
more possible decompositions that are equally right. So, a de-
modulation algorithm needs to include some means to select the
desired solution. Without this, there is no way to distinguish be-
tween the infinite set of valid modulator–carrier pairs.

The goal of this paper is to introduce optimization theory as
a vehicle for solving the demodulation problem. It is our be-
lief that the decision process necessary to select the ideal mod-
ulator–carrier pair for a signal aligns perfectly with constrained
cost function optimization, especially within a convex frame-
work for easier computation. Furthermore, to demonstrate the
power of this new approach, we develop two specific demodu-
lators and apply them to many types of signals, including those
with harmonic, stochastic and time-varying carriers. No other
current demodulation algorithm can successfully deconstruct
this collection of signals as well.

This paper describes past demodulation methods and their
limitations, as well as our goals for a general demodulator, in
Section II. Section III describes the theoretical and optimiza-
tion issues, using both a linear and a logarithmic framework.
Section IV describes the specific cost functions necessary to
solve the optimization problem. Finally, Section V demonstrates
the power of the methods on a wide range of signals, including
those with harmonic, stochastic, and time-varying carriers.

II. BACKGROUND

There are a number of approaches to solve the demodulation
problem. This section describes the successes and limitations of
conventional (Section II-A) approaches to demodulation, and
describes the goals for an ideal demodulation (Section II-B).
We defer to Section V-G the role of dividing the input signal
into subbands using a filterbank.

1558-7916/$26.00 © 2010 IEEE
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A. Past Work

A classic method for demodulation is Hilbert envelope detec-
tion. This process simply assumes the modulator is the magni-
tude of the analytic signal. This method certainly returns a valid
decomposition from a purely mathematical perspective. How-
ever, there is no opportunity to control which solution the algo-
rithm returns. As a result, the solution does not adhere to the
definition of acoustic demodulation, to be given in Section II-B,
when the carrier is harmonic or noisy.

Recent work has also shown that, because the modulator mag-
nitude is not necessarily bandlimited, filtering the modu-
lator or carrier can lead to artifacts upon remodulation [7], [16].
In the case where these artifacts are caused by sign errors as
a result of the non-negativity of the modulator magnitude, the
sign restoration method, discussed in Section IV-A4, restores
the correct modulator. However, even with sign restoration, ban-
dlimiting cannot be guaranteed, and the issues with noisy or har-
monic carriers remain.

A spectrogram is a type of demodulation because the magni-
tude coefficient of each channel of the filterbank gives a down-
sampled energy estimate over time. This method is familiar,
easy to implement, and it allows for a great deal of versatility.
By intelligently choosing the parameters for the spectrogram
(i.e., narrowband versus wide-band), a wide range of decom-
positions are possible. However, this method is subject to the
same time–frequency tradeoffs that any spectrogram encoun-
ters, where increasing resolution in one dimension decreases
resolution in the other. Furthermore, if a filterbank channel has
more than one component, there is no way to distinguish be-
tween them in the representation.

Additionally, a modulation spectrogram has been proposed
[9]. The method begins with a filterbank decomposition, and
then low-pass filters each channel. The modulation spectrogram
is then built from the 4-Hz coefficient of each channel’s short-
time Fourier transform. The extension of the low-pass filter is a
valuable addition, in that it adds control over the modulator, but
the issues with the spectrogram listed above still persist.

Building off the work on homomorphic demultiplication [14],
Atlas et al. [2] implemented a homomorphic demodulator after
a subband decomposition. In the logarithmic domain, the mul-
tiplicative relationship in (1) becomes a summation. The log-
arithmic-domain modulator is extracted as the real part of the
logarithmic signal, and then filtered before it is linearized with
an exponential. The method is based on the same modulator def-
inition as the Hilbert envelope, and so the same difficulties with
harmonic or noisy carriers apply here as well.

A biologically motivated demodulation algorithm is pre-
sented by Elihilali, Chi, and Shamma [6]. The method first
applies an auditory model to the input signal to yield an in-
ternal neural representation called the auditory spectrogram.
The spectrogram is then analyzed to estimate the spectral and
temporal modulations using filters modeled after ones found
in the mammalian primary auditory cortex. This is the only
method to date that views modulation as both a temporal and
spectral process.

Turner and Sahani introduced a method for probabilistic de-
modulation based on a cascade process connecting demodula-

tions at different time scales [18]. The demodulations extract
increasingly fine time structures for sentences, phonemes, and
formants. This paper is important in that it allows the definition
of the modulator to be tuned, and also suggests the process can
be solved as an optimization. The need for modulation criteria
in order to differentiate between the infinite possible solutions
in a demodulation is also highlighted. We extend this work by
deriving optimization criteria that guarantee a global optimum
solution.

Recent work proposed subband carrier demodulation as a
method for coherent modulation detection [16]. The algorithm
estimates the carrier phase of each channel of a complex filter-
bank. Each channel is then demodulated with a complex signal
with an inversion of the phase estimate, essentially shifting the
spectrum by the estimated carrier frequency. This is the first
approach to attempt demodulation by first estimating the car-
rier. One of the primary advantages of this method is that the
modulator and carrier are guaranteed to be bandlimited. Also,
if the carrier phase estimate is accurate, the subband demodula-
tion is perfect. However, if the phase estimate is inaccurate (due
to noise, multiple carriers in the channel, or a nonstationary car-
rier), then the demodulation will improperly shift the spectrum.
Even in the errant cases, though, the modulator can be guaran-
teed to be bandlimited.

These methods for demodulation decompose a signal with
different levels of complexity and accuracy. This paper intro-
duces a method that can return any possible decomposition de-
pending on the objective function in the optimization, and that
can improve performance on non-stationary and harmonic car-
riers.

B. Goals for A Demodulator

In addition to extracting a valid modulator and carrier from a
signal, a demodulation algorithm should meet a few additional
criteria. We believe that an acoustic demodulator should distin-
guish pitch from modulation consistently and based on a trans-
parent and clearly understandable metric, it should act as an
identity operator on modulators, and it should satisfy the pro-
jection property.

• Distinguishing Pitch and Modulation: Several demodu-
lation algorithms are unable to explicitly define the char-
acteristics that comprise a modulator or a carrier. The two
components are determined on a case-by-case basis instead
of operating under a higher level definition of the modu-
lator or carrier class. We argue that an effective demodula-
tion algorithm should explicitly define the characteristics
of a modulator and a carrier and then obey those character-
istics.
Generally, we define a modulator as a lower frequency
signal, and a carrier as a higher frequency signal. For the
purposes of this paper, we will expand this definition to
account for the perceptual experience. A human listener
will interpret low-frequency modulation (below approxi-
mately 25 Hz) as amplitude variation, while higher fre-
quency modulation is interpreted as multiple carrier fre-
quencies. An acoustic modulator should therefore only in-
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clude the low-frequency content that is interpreted as am-
plitude, but exclude the higher frequency content.

• Modulator Identity: A modulator is defined as a signal
that cannot be further demodulated [5]. A demodulation
algorithm should obey this property. In other words, de-
modulating a modulator should yield the trivial carrier,

.
• Projection Property: Ghitza developed a test for modu-

lator distortion in modulation filtering [7], sometimes re-
ferred to as the projection property [5]. This test was later
refined to the following two conditions.
1) Remodulated subbands are bandlimited within the

channel filter bounds.
2) Demodulation of a remodulated carrier with a filtered

modulator yields the original
carrier, .

Because we do not require a subband decomposition, we
do not address the first condition. However, a demodulation
algorithm should adhere to the second condition so that it
can satisfy the requirements for modulation filtering.

We can achieve these goals by formulating demodulation as
an optimization problem and designing appropriate cost func-
tions and constraints. We show how to do this in the next sec-
tion.

III. DEMODULATION AS AN OPTIMIZATION

PROBLEM—THE THEORY

We describe general optimization problem as a cost (or ob-
jective) function minimization with any number of equality and
inequality constraints [3]

minimize
subject to

If the cost function and inequality constraints are all
convex and the equality constraints are all affine, then the
problem is said to be a convex optimization problem. This is de-
sired, because convex optimization problems can be iteratively
solved using gradient descent algorithms, allowing them to be
solved dependably and efficiently. For more on the definition
of convexity, convex problems, and numerical solvers, see the
textbook by Boyd and Vandenberghe [3].

However, properly constraining modulation within the
convex restrictions is not trivial. The modulation relationship
in (1) is not convex, because the known variable is defined
as the product of the two unknowns, and . Therefore,
a convex optimization problem cannot directly utilize (1) as an
equality constraint. Instead, we must find a way to represent
the relationship while preserving convexity.

In this paper, we write expressions for the modulation and
carrier as a function of time. To implement these equations, we
sample the signals above the Nyquist rate. We sum and norm
the loss functions over all samples. We implement the contin-
uous-time derivatives with finite differences. The minimizations

we describe here are high-dimensional, with one free parameter
per equation per time sample. Fortunately, modern convex-op-
timization codes make it easy to solve for hundreds of free vari-
ables in fractions of a second on a laptop computer.

The next two sections show two different frameworks for
converting demodulation into a convex optimization problem.
Both approaches produce viable demodulations, but they differ
in how they fit the demodulation relationship into a convex
constraint. Sections III-A and III-B describe these constraints
for linear- and logarithmic-domain demodulation and then
we show how to satisfy modulator identity in each of these
cases in Section III-C. Then, in Section IV, we will describe
specific examples of cost functions and constraints for the two
frameworks.

A. Logarithmic-Domain Convex Demodulation

One solution to the convexity issue is to work in the loga-
rithmic domain. There, the optimization variables can be defined
simply as the logarithm of the squared linear optimization vari-
ables and , or

The variables are squared to avoid taking the logarithm of neg-
ative numbers. The magnitude could also be used, but squaring
is preferred because, unlike the magnitude, it preserves the ban-
dlimiting on the modulator, and it simplifies working with the
derivatives, which will be important in the cost functions intro-
duced in Section IV.

Now, the non-convex relationship in (1) is represented with
a simple sum of the logarithmic-domain optimization variables
so that

Using this constraint, framing a legal convex optimization
problem is simple:

minimize
subject to

(2)

Here, and are the cost functions for the modulator
and carrier variables, respectively. These functions can be any
convex function, including the -, -, and -norms. The cost
functions dictate which of the infinite valid decompositions will
be selected, and they are the aspect of the optimization frame-
work that allows it to be customizable to a specific application.

Additional constraints and cost functions can also be added
to the problem, but any additional cost functions or inequality
constraints must be convex in the optimization variables, and
any additional equality constraints must be affine. We will de-
sign specific cost function in Section IV-A, after describing the
restrictions imposed in order to achieve modulator identity in
Section III-C.
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B. Linear-Domain Convex Demodulation

An optimization framework can also be derived in the linear
domain. First, note that the constraint defined in (1) implies that,
given the modulator , there is only one carrier

(3)

Using this relationship, an optimization problem can be posed
that eliminates the optimization variable and instead oper-
ates only on . First, the problem is framed with the non-
convex constraint

minimize
subject to

By substituting in (3), the constraint is reduced to the trivial
and eliminated, and the problem is legally convex:

minimize

The modulator cost function can be any convex function.
However, because the carrier cost function is operating on
the inverse of the optimization variable , it must be both
convex and non-decreasing (non-negative first derivative) for
the problem to be convex.

Another issue is that utilizing the inverse of the modulator
means that there is a discontinuity in the search space at

. Additionally, is convex only for
(since its second derivative is positive for )
and concave for . So, to eliminate these complications,
the modulator is restricted to be non-negative.

minimize
subject to

(4)

We will design specific loss functions for the linear-domain de-
modulator in Section IV-B

C. Satisfying Modulator Identity

As described in Section II-B, modulator identity requires that
demodulating a modulator leaves the trivial carrier, .
In the optimization context, this means that, with a modulator
as input, the cost of the modulator and the trivial carrier is less
than the cost of any other possible decomposition. For both op-
timization frameworks introduced above, we can derive a set of
criteria that ensures modulator identity is satisfied in all cases.

1) Logarithmic Domain: If a signal is optimally decomposed
in the logarithmic domain into the modulator–carrier pair
and , then the cost of these signals is necessarily less than
the cost of any other decomposition so that

(5)

for any feasible signal . The above equation must be true,
because the optimization process minimizes the cost function,

and therefore the solution will have the minimal cost of all fea-
sible modulator–carrier pairs.

Now let us say that we use the optimal logarithmic modulator
as the input signal for the algorithm. In order to have mod-

ulator identity, the cost of no further decomposition must be the
minimal cost, since, as stated above, the modulator–carrier pair
that minimizes the cost function is the solution of the optimiza-
tion problem or

(6)

where, again, is any feasible signal.
Equation (6) provides a condition for modulator identity

for the optimization framework in (2). We will show that the
specific logarithmic-domain cost functions to be derived in
Section IV satisfy this condition.

2) Linear Domain: In the linear domain, if a signal is
found to have the optimal modulator , then the cost for that
modulator is optimally minimal so that

(7)

for any feasible signal . If we use the optimal linear mod-
ulator as the input signal, then the cost of no further de-
composition should be the minimal cost, according to modulator
identity:

(8)

Note that a unit carrier in the linear domain is , as opposed to
in the logarithmic domain.
Equation (8) provides a condition for satisfaction of modu-

lator identity for the optimization framework in (4). We will
show that the specific linear-domain cost functions derived in
Section IV satisfy this condition.

IV. DEMODULATION AS AN OPTIMIZATION

PROBLEM—THE DESIGN

In (2) and (4), we outlined an optimization framework for log-
arithmic-domain and linear-domain demodulation, respectively.
We will now derive two sets of cost functions and constraints,
one for each case, designed to perform the desired demodula-
tion on an arbitrary input signal.

There is an art required in fitting a problem into a convex-op-
timization framework. Simple rules one might want to use to
specify the optimal solution are often not convex. In some cases,
a similar and convex rule exists to accomplish the same goal,
but, in many cases, the requirements of convexity prevent using
seemingly intuitive approaches. We have already seen this to a
small degree, with the adjustments necessary to legalize (1) for
inclusion in the optimization. Similar problems were found with
designing specific cost functions and constraints, and the work
that follows represents challenges that could be solved with cre-
ativity and compromise, and also challenges that led only to
dead ends.



SELL AND SLANEY: SOLVING DEMODULATION AS AN OPTIMIZATION PROBLEM 2055

A. Designing Logarithmic-Domain Cost Functions and
Constraints

In this section, we derive a cost function for the logarithmic-
domain demodulation framework in (2). The cost function pe-
nalizes high frequencies in the modulator by minimizing the
derivative of and encourages spectral sparsity in the loga-
rithmic carrier variable . Additionally, we minimize the car-
rier energy. We describe these two solutions for the loss function
in the next two subsections.

1) Logarithmic-Domain Modulator Cost Function: The def-
inition of an acoustic modulator suggested in Section II-B is
given in terms of frequency bandlimiting. The most direct way
to select a modulator based on this definition is to weight the
spectrum appropriately. However, these spectral weights are in
terms of the linear variable , and the logarithmic-domain
demodulation framework from (2) optimizes the variable .
The spectrum of is related to the spectrum of , but has
extra harmonics as a result of the nonlinear logarithmic trans-
formation. The frequencies in the new spectrum are still related
to the original fundamental frequency (as the periodicity of the
signal is unchanged), but the sharp drops to large negative num-
bers as the original signal approaches 0 result in high-frequency
harmonics that were not present in the original signal. As a re-
sult, bandlimiting constraints on the logarithmic variable do not
cleanly translate to the linear domain.

However, we can impose a spectral weighting by working
with the derivatives, which accentuate the higher frequencies
of the signal by imposing a highpass filter. Therefore, if we
minimize the derivative of the modulator, we will be essen-
tially penalizing high frequencies. Higher-order derivatives pe-
nalize against high frequencies. Weighting the derivatives of
the logarithmic variable still does not directly translate
to the linear modulator, but, unlike with spectral weights, we
can derive equations that do translate, resulting in a modulator
cost function that removes high frequencies from by min-
imizing the derivatives of .

For the first derivative, this derivation is simple. The only
difference between the first derivative of and is a
scaling by the amplitude of the linear modulator :

For the second derivative, the relationship is slightly more com-
plex:

However, optimizing simultaneously over the second derivative
and the square of the first derivative of results in the opti-
mization of , though it is still scaled by the amplitude of

:

Higher order derivatives beyond the second derivative become
far too complex for useful implementation. We found through
experimentation that minimization of the second derivative is
sufficient to impose the desired high-frequency penalty. Mini-
mizing only the first derivative is generally not as effective.

So, we use the second derivative relationship in this imple-
mentation. Ideally, we simply minimize the -norm

(9)

However, because of the rules of convex programming, we
cannot do this. The squared first derivative is a convex function
applied to the variable . Any function applied to that value
must be convex as well, and also non-decreasing (non-negative
slope). Norms do not satisfy the non-decreasing requirement.

Instead, we can minimize the summation of the second
derivative. However, this will encourage large negative values
that will drive down the total. To counter this, we also include
a minimization on the norm of the second derivative of .
Thus, the loss for the proposed modulator is the sum
of the second derivative approximation in (9) and a term that
prevents the second derivative from getting too large, or

(10)

2) Logarithmic-Domain Carrier Cost Function: For the cost
function on the carrier variable , we use the -norm of the
spectrum of to encourage sparsity in the frequency domain.
This is used on the assumption that the desired carrier is a har-
monic signal, and therefore has a sparse spectrum. Note, the
harmonics added in the nonlinear logarithmic transformation do
affect this metric by crowding the spectrum a bit more, but a car-
rier with a sparse spectrum will still have a sparse spectrum in
the logarithmic domain:

By including the -norm of weighted by a constant ,
the method produces better results by allowing more energy to
shift to the modulator, giving us

Also, we found that using the analytic signal and then opti-
mizing over the real part of , similar to the process by Atlas
et al. [2], produced better results than the real signal . Essen-
tially, this means that we are demodulating the Hilbert envelope
with the optimal criteria. Thus the complete loss function for the
carrier is written as

(11)

Note that the use of norms here falls within the constraints of
convex optimization because, unlike the modulator cost func-
tion in (9) and (10), the norms are performed on linear opera-
tions of the optimization variables.
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3) Logarithmic-Domain Optimization Problem: So, substi-
tuting (10) and (11) into (2), we are able to define the convex
problem as a minimization of

(12)

subject to

(13)

Note that we included an additional parameter weight in
the modulator cost function. This is set to for signals
with a single-component carrier, but must be increased to im-
prove results for harmonic carriers, which will be shown later.
Based on experiments, we set for all cases.

4) Sign Restoration: This optimization problem solves for
, from which the magnitude of the linear modulator can be

extracted:

However, this results in a similar problem to that discussed in
Section II-A for Hilbert envelope detector. The modulator mag-
nitude is non-negative and therefore will not be able to track sign
changes in the original modulator. These errors occur at zero
crossings, where the magnitude stays positive while the original
modulator is negative, as discontinuities in the first derivative
of the modulator magnitude. So, in order to restore the original
modulator from the magnitude , we iteratively solve
for the combination of the positive and negative magnitude that
minimizes jumps in the first derivative, or the magnitude of the
second derivative. To restore the sign we

minimize

subject to

5) Modulator Identity: We can show that this algorithm acts
as an identity operator for the modulator by proving that (6) is
true. It is not difficult to show that one set of criteria for this is

and

(14)

The first inequality must be true, because the cost function is
simply a sum of norms, and any norm of is 0. The second
inequality can also be proven to be true. First, we begin with
Jensen’s inequality, which is true for any convex function (
has already been restricted to be convex). Here, we also use
the trivial substitutions and

and rewrite (14) to find

(15)

Fig. 1. Spectral weight function � ��� used to penalize high frequencies
in the modulator ����. Frequencies in the modulator below 25 Hz cost very
little, and the cost increases until it flattens near 55 Hz and above. A symmetric
weighting is applied to the negative frequencies.

If also satisfies the scaling property

(16)

then we can show that the desired inequality in (14) must be
true, because

(17)

For this implementation, does fulfill (16) because con-
tains only norms, and norms by definition satisfy the scaling
property with equality. Therefore, this set of cost functions sat-
isfies modulator identity.

6) Projection Property: Once again, the logarithmic trans-
formation complicates the process. Assessing the affects of fil-
tering in the linear domain on a logarithmic signal while pre-
serving filter generality is extremely difficult. So, we will in-
stead leave proof of the projection property for logarithmic do-
main for future work.

B. Designing Linear-Domain Cost Functions and Constraints

1) Linear-Domain Modulator Cost Function: Unlike the
logarithmic-domain case, in the linear-domain framework of
(4), the cost functions can be written directly in terms of the
spectrum of the modulator . So, we use high weights
in the frequency domain to penalize high frequencies. In our
work, the weighting function is a sigmoid function, displayed
in Fig. 1. The weights are designed so that the bandlimiting is
smooth, and so that, at some point between 25 and 50 Hz, the
cost of including the spectral content grows too high, imposing
the desired cutoff point from Section II-B.
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The cost function used for this modulator is then the -norm
of the weighted spectrum (weighted at frequency with weight

) plus the -norm of the modulator itself or

(18)

2) Linear-Domain Carrier Cost Function: Because the car-
rier is unique for any given modulator , finding the desired
modulator means that the desired carrier has been found as well.
The modulator cost function is sufficient for determining the de-
sired modulator, so no cost on the carrier is needed for the op-
timization. We ignore the carrier by setting its cost function to
zero or

(19)

3) Linear-Domain Constraints: Because the carrier is left
unpenalized, it is necessary to add another constraint. We ob-
serve that, without loss of generality, the magnitudes of the
signal, carrier, and therefore modulator are all less than 1 at all
times (values greater than 1 are clipped) so

Also, using (3) and the above inequalities, it must be true that
the magnitude of the modulator is greater than or equal to the
magnitude of the signal at all times so

therefore

Since we have already constrained the modulator to be non-neg-
ative, we know that the modulator and its magnitude are equal
at all times, and the relationship can be simplified to

(20)

4) Linear-Domain Optimization Problem: With the con-
straint in (20) and the cost functions in (18) and (19), we have
a complete optimization problem within the linear-domain
framework:

minimize
subject to

Note that the norms in the cost function are now squared, so
that the problem becomes a quadratic optimization problem (a
subclass of convex optimization) and thus is easier to solve.

5) Sign Restoration: Because this algorithm only considers
non-negative modulators it is preferable to include a means
for sign restoration. However, because of the bandlimiting
of the modulator, sign errors will not manifest themselves as
discontinuities in the first derivative, but instead will be smooth,
making it very difficult to restore the sign changes from the
original modulator. Squaring the signal prior to demodulation
solves this problem mathematically, but, in practice, still does
not produce sharp enough discontinuities to allow the method

in Section IV-A4 to restore the sign changes. Development of
an extension to this algorithm that would allow it to track sign
changes in the modulator is a direction for future work.

6) Modulator Identity: Fulfilling modulator identity in the
linear domain means that (8) must be true. It is easy to show
that this is the case if

and

This is trivially true, because for all . There-
fore, modulator identity is satisfied.

7) Projection Property: We can show that the projection
property holds for these cost functions. First, we note that the
carrier has already been optimally demodulated. Therefore,
any components in the original signal that are sufficiently
low cost in the modulator cost function have already been
removed as modulation.

The unfiltered optimal modulator , on the other hand,
consists exclusively of components that are of sufficiently low
cost in (defined in Fig. 1 as low frequencies). Furthermore,
if we normalize the filter in the frequency domain

then it must be true that the filtered modulator also
consists of only low-cost frequency components. Here, it is crit-
ical that the modulator cost function is defined exclusively
in terms of frequency weights and energy norms, which makes
it possible to directly define the effect of modulation filtering on
the cost in the optimization.

Based on these conclusions, in the remodulated signal
contributes only modulator

content (provided that satisfies all other modulator
constraints, which, in this case, means non-negativity), and
contributes only carrier content, as defined by the cost functions

and . As a result, the demodulated components will be
the filtered modulator and the original carrier ,
satisfying the projection property.

V. RESULTS

In this section, we demonstrate the utility of the optimal de-
modulation approaches on several different kinds of signals. The
simplest approaches to demodulation, such as an envelope de-
tector, do a good job of finding the envelope for a single mod-
ulated sinusoid with no noise. To better illustrate the difference
between these algorithms we demonstrate optimal demodula-
tion using frequency chirps, harmonic carriers and a noisy car-
rier.

We often display the demodulation results using signal plots,
but since the results are so good it is hard to judge their per-
formance. Thus, we also characterize the performance of an al-
gorithm by adding noise to stress the demodulation approach.
Ideally, the performance should degrade gradually as noise is
added, until the model is no longer valid and the modulation
and carrier are no longer recoverable. Noise is a difficult com-
ponent for demodulation algorithms to deal with because noise
is not part of the model .
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Fig. 2. Low frequency modulator applied to a single sinusoidal carrier of 200.7 Hz (a) and the modulators extracted by logarithmic-domain demodulation (b) and
linear-domain demodulation (c) plotted with the original modulator.

Fig. 3. Exponentially derived modulator applied a single sinusoidal carrier of 150.7 Hz (a) and the modulators extracted by logarithmic-domain demodulation (b)
and linear-domain demodulation (c) plotted with the original modulator.

Fig. 4. Phase-inverting sinusoidal modulator applied to a single sinusoidal carrier of 200.7 Hz (a) and the modulators extracted by logarithmic-domain demodu-
lation (b) and linear-domain demodulation (c). The original modulator is shown as a dot-dashed line. Linear-domain demodulation fails to track the sign changes
because it restricts the modulator to be non-negative.

For all examples, input signals were broken into 100-ms clips
with a 50% overlap and windowed with a Hann window. This
allows computation time to scale linearly with increasing signal
length instead of exponentially at the cost of limited time scope
for the optimization. However, we have found no significant dif-
ference in the demodulation as a result of this decision. Opti-
mizations were performed with the Matlab toolbox cvx [8].

All synthetic examples are also windowed with a Hann
window of length equal to the entire signal, which is reflected

in the plots. This windowing is to smooth the onsets and offsets.
For real speech examples, though, this window was not needed.

A. Stationary Sinusoidal Carrier

1) Sinusoidal Modulator: The simplest example is a high-
frequency carrier with a low-frequency modulator. An example
is shown in Fig. 2(a), with a 200.7-Hz carrier. The extracted
modulators are in Fig. 2(a) and (b) for logarithmic-domain de-
modulation and linear-domain demodulation, respectively. Both
methods estimate the modulator very accurately.
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Fig. 5. A 500-Hz sinusoid with an 8.7-Hz modulation and its extracted modulators are shown in the top row. The same carrier with a 250-Hz modulation is shown
with its extracted modulators in the bottom row. Both demodulators extract the 8.7-Hz modulation and the signal’s overall window shape, but then ignore the
250-Hz pitch modulation. (a) Original, 8.7-Hz Modulation. (b) Logarithmic. (c) Linear. (d) Original, 250-Hz Modulation. (e) Logarithmic. (f) Linear.

2) Exponential Modulator: An exponentially derived modu-
lator applied to a single sinusoidal carrier of 150.7 Hz is shown
in Fig. 3(a) with its extracted modulators in Fig. 3(b) and (c).
Again, both methods are very accurate.

3) Suppressed-Carrier Sinusoidal Modulator: Fig. 4(a)
shows a single sinusoidal carrer of 200.7 Hz with a sup-
pressed-carrier sinusoidal modulator. Logarithmic-domain
demodulation estimates the modulator very well, as shown
in Fig. 4(b). Linear-domain demodulation fails to track the
sign changes [Fig. 4(c)], because the modulator is restricted to
non-negativity. However, the estimated modulator does track
the magnitude of the original modulator well.

4) Low-Frequency Versus High-Frequency Modulator: We
suggested in Section II-B that an effective demodulator should
differentiate between low-frequency modulation and high-fre-
quency modulation in a manner similar to a human listener. To
demonstrate this, Fig. 5(a) shows a single sinusoidal carrier of
500 Hz with a low-frequency modulator of 8.7 Hz, and Fig. 5(d)
shows the same single sinusoidal carrier with a high-frequency
modulator of 250 Hz. The only difference between these two
signals is the modulation frequency.

The low-frequency estimated modulators are shown in
Fig. 5(b) and (c) for the logarithmic-domain modulator and
linear-domain modulator, respectively. The high-frequency
estimated modulators are shown in Fig. 5(e) and (f).

Both demodulation methods successfully differentiate the
two cases. The low-frequency modulator is extracted as mod-
ulation, while the high-frequency modulation is seen as pitch,

Fig. 6. Mean squared error of the estimated modulator plotted against the fre-
quency of the original modulator for a single carrier at 353.8 Hz. At low fre-
quencies, the error is small. At high frequencies, the error is large, because the
estimated modulator excludes high frequencies. This plot is for linear-domain
demodulation. Note the similarity in shape to the spectral weights � ��� in
Fig. 1.

and so the estimated modulators are only the window that was
applied to the original signal.

Logarithmic-domain demodulation makes this distinction be-
cause, as the frequency of the modulator increases, the penalty
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Fig. 7. Low-frequency modulator applied to a chirp carrier (a) and the modulators extracted by logarithmic-domain demodulation (b) and linear-domain demod-
ulation (c). In both cases the errors are negligible.

for its high second derivative increases as well. Eventually, the
cost becomes too high, and so the high-frequency content is ex-
cluded from the estimated modulator.

Linear-domain demodulation penalizes higher frequencies
in the modulator more directly, using the frequency-dependant
penalty function shown in Fig. 1. As the frequency increases, so
does the penalty, and, as was the case with logarithmic-domain
demodulation, the cost eventually becomes too high and the
higher frequency content is excluded from the modulator.

To illustrate this transition from amplitude to pitch as a
function of modulation frequency more clearly, Fig. 6 shows
the mean squared error of the estimated modulator for different
modulation frequencies, using linear-domain demodulation.
The plot shows that modulation under 25 Hz is extracted
accurately. Likewise, it is clear in Fig. 1 that the cost for
the modulator frequency at these levels is very low. As the
frequency increases above 25 Hz, the cost on the modulator
increases as well, and so the demodulation algorithm begins to
push the energy out of the estimated modulator. This is reflected
as increased error in Fig. 6, since the estimated modulator is
deviating from the original modulator (counterintuitively, in
this case, error is desired as modulation frequency increases).
Finally, above 45 Hz, the cost of the modulation frequency
has become sufficiently high, and the error plateaus, indicating
that all of the higher frequency modulation energy has been
pushed from the estimated modulator. At this point, estimated
modulators are similar to Fig. 5(f).

B. Swept Sinusoidal Carrier

Fig. 7(a) shows a sweeping sinusoidal carrier (from 200 to
250 Hz in 1 second) modulated by a low-frequency modulator.
The estimated modulators are shown in Fig. 7(b) for loga-
rithmic-domain demodulation and Fig. 7(c) for linear-domain
demodulation. Both methods are able to accurately estimate the
original modulator.

C. Stochastic Carrier

All previous examples have used single sinusoid carriers
(except in the high-frequency modulation cases, where the
carrier can be seen as multiple sinusoids with a unit modulator).
Fig. 8(a) shows a low-frequency modulator instead applied to
a stochastic carrier of uniformly distributed noise. Fig. 8(b)

Fig. 8. Low-frequency modulator applied to a stochastic carrier (a) and the
modulators extracted by logarithmic-domain demodulation with � � �

(b) and � � �� (c), and linear-domain demodulation (d). All are plotted
with the original modulator. Additional weight is needed for the modulator in
the logarithmic-domain case because the added spectral content in the harmonic
carrier disrupts the balance of the cost function. Setting� � �� restores the
balance.

shows the modulator estimated with logarithmic-domain de-
modulation. The estimate is not very good, because the carrier
is not spectrally sparse. The estimate can be greatly improved if
extra weight is added to the modulator cost function by setting

, resulting in the modulator shown in Fig. 8(c). This
is a much better estimate, though it is still not as accurate as
previous examples. Linear-domain demodulation is still able to
estimate the modulator very accurately, as shown in Fig. 8(d).

Linear-domain demodulation outperforms logarithmic-do-
main demodulation in this case because, in the linear case,
the dense carrier is not penalized in any way. So, increasing
the complexity of the carrier, either with added harmonics or
noise, will have a very minimal effect. Logarithmic-domain
demodulation, on the other hand, penalizes non-sparsity in the
carrier spectrum, so added harmonics or noise can throw off the
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Fig. 9. Logarithmic-domain demodulation result for the same modulated single
sinusoidal carrier from Fig. 4 with� � ��, which means the balance will
favor a modulator with less cost on its slope. This shift results in an overly
jagged modulator. In this case, the weight � � �� is excessive for the
simple carrier.

Fig. 10. Low-frequency modulator applied to a harmonic carrier of 90.7 Hz
and its first ten harmonics (a) and the modulators extracted by logarithmic-do-
main demodulation with� � � (b) and� � �� (c), and linear-domain
demodulation (d). All show the original modulator as a dot-dashed line.

balance between the cost of the modulator and the cost of the
carrier, pushing carrier energy into the modulator.

At this point, it is sensible to wonder why the weight
is not set to 10 in all cases. The problem with this change is
that simpler carriers, such as single sinusoidal carriers, are not
strongly penalized. So, increasing the cost on the modulator
leads to a jagged and overly minimized modulator. For example,
in the case of the single sinusoidal carrier shown in Fig. 4, the es-
timated modulator from logarithmic-domain demodulation with

is shown in Fig. 9. This result is clearly suboptimal.

Fig. 11. Mean squared error of the modulator estimated with Hilbert enve-
lope detection (solid line), linear-domain demodulation (dotted line), and loga-
rithmic-domain demodulation (dashed line) for a single 200.7-Hz sinusoid mod-
ulated with a 4.3-Hz sinusoid with added noise. All three methods are robust to
noise and then deteriorate similarly below 20-dB SNR. However, logarithmic-
domain demodulation does show some inconsistent deterioration as a result of
the higher level noise.

Fig. 12. Mean squared error of the modulator estimated with Hilbert enve-
lope detection (solid line), linear-domain demodulation (dotted line), and loga-
rithmic-domain demodulation (dashed line) for a 90.7-Hz harmonic tone mod-
ulated with a low-frequency sinusoid with added noise. Unlike Fig. 11, the in-
ability of Hilbert envelope detection to extract modulators for harmonic signals
causes a consistently high error for that method. Both optimization methods still
perform similarly well compared to the single sinusoidal carrier case.

So, tuning the weight is required for optimal results with
carriers of varying cost in the optimization functions.

D. Harmonic Carrier

Fig. 10(a) shows a harmonic carrier (90.7 Hz funda-
mental with ten harmonics) modulated with a low-frequency
modulator. Fig. 10(b) shows the modulator estimated with
logarithmic-domain demodulation. As was the case with a
stochastic carrier, this estimate is not very good. Here, though
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Fig. 13. Several speech signals and the modulators estimated with linear domain demodulation. (a) Female speaker, “The pipe began to rust while new.” (b) Female
speaker, “Add the sum to the product of these three.” (c) Male speaker, “Cats and dogs each hate the other.”

the carrier is still sparse, the added harmonics increase expo-
nentially in the logarithmic domain, and so the balance of the
optimization is skewed. Once again, the estimate is improved if
extra weight is added to the modulator cost function by setting

, resulting in the modulator shown in Fig. 10(c). Also
like the stochastic carrier example, linear-domain demodulation
is still able to estimate the modulator very accurately, as shown
in Fig. 10(d).

E. Noisy Signals

Linear-domain and logarithmic-domain demodulation were
tested in the presence of noise and compared to Hilbert envelope
detection. The mean squared error (MSE) of the estimated signal
for different signal-to-noise ratios (SNRs) is shown in Figs. 11
and 12, with Hilbert envelope detection shown as a solid line,
linear-domain demodulation as a dotted line, and logarithmic-
domain demodulation as a dashed line.

In the single sinusoidal carrier case (Fig. 11), all of the
methods show very accurate demodulation above 20-dB SNR,
resulting in very low mean squared error of the estimated mod-
ulator. Deterioration is seen below 20 dB, though it is smooth
and comparable for Hilbert envelope detection and linear-do-
main demodulation. Logarithmic-domain demodulation shows
a slightly more erratic behavior with increasing noise, though
the overall level of deterioration is similar to the other methods.

In the case of the harmonic carrier (Fig. 12), both optimiza-
tion algorithms perform similarly to the single sinusoidal carrier
case, and degrade similarly as well. However, Hilbert envelope
detection fails at all SNR levels, because it is unable to properly
demodulate harmonic signals.

It is worth noting that, unlike Hilbert envelope detection and
logarithmic-domain demodulation, the reason for the degrada-
tion of the linear-domain algorithm is not that it fails as a re-
sult of the noise. Instead, it is because of the constraint

, in which the added noise is included in the signal .
So, the algorithm is restricted to demodulating the sum of the
original modulated signal and the noise. As the noise becomes
more significant, its effect on the waveform increases as
well, and so the signal being demodulated, , resembles the
original modulated signal less and less.

F. Speech Examples

We also applied linear domain demodulation to several real
speech signals. We chose to only utilize linear-domain demod-
ulation in this case because of the harmonic and noisy nature
of speech, which logarithmic-domain demodulation struggles
to demodulate as accurately, as shown in the Sections V-C and
V-D. Also, because linear-domain demodulation is a quadratic
optimization problem, it can be solved much faster than loga-
rithmic-domain demodulation, which began to get cumbersome
with the real audio signals.

Fig. 13 shows several speech signals and their estimated mod-
ulators. The modulators track the signals very well, and look
to be very reasonable and accurate estimations. Since there is
not a known true modulator, no numerical comparison can be
made. However, these examples do confirm that this method is
capable of demodulating real audio consisting of harmonic and
noisy components.

G. Subband Decomposition

Most demodulation methods use a front-end subband decom-
position, either to separate source components or to simulate
critical bands in the auditory system. Our methods can also in-
clude a subband decomposition prior to demodulation, as this
section will show. The extension from (1) is simple, where in-
stead of being viewed as a single product model, the problem is
viewed as a sum-of-products model [14]:

In this model, is a subband channel. If each channel de-
modulation is viewed as its own problem ,
then each can be solved individually with convex demodulation.

However, there are several issues that the inclusion of a de-
composition raises. Namely, demodulation after a subband de-
composition eliminates the ability to extract wideband carriers
and modulators, compromises the symmetry of the spectrum
potentially resulting in the need for complex modulators, and
changes the very definition of modulation to include spectral
filtering effects.
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Fig. 14. Several plots of the linear-domain demodulated components of the signal “The pipe began to rust while new” as spoken by a female speaker with
and without subband decomposition. The first row shows the carriers after (a) no decomposition, (b) 11-channel, 200-Hz Hamming filterbank decomposition.
(c) 101-channel, 20-Hz Hamming filterbank decomposition. The second row shows white noise modulated with the extracted envelopes after (d) no decomposi-
tion, (e) 11-channel decomposition, (f) 101-channel decomposition. Higher decomposition channel resolution results in spectral filtering and pitch information
moving from the carrier to the modulator.

If a speech signal is demodulated in its entirety, without any
decomposition, then the filtering effects are preserved in the car-
rier [as shown in Fig. 14(a), demodulated with the linear-do-
main method], while the modulator [shown with a white noise
carrier in Fig. 14(d)] represents only the changes in amplitude.
Because the demodulation is performed on the wideband signal,
it will not affect the relative harmonic amplitudes. However, in
the case where decomposition is included, the spectral effects
(both from filtering present in the original signal and from the
subband filtering itself) are removed from the carrier in the de-
modulation. Fig. 14(b) shows the rebuilt carrier (the sum of the
channel carriers) after demodulation on each channel of an 11
channel, 200 Hz Hamming filterbank decomposition. The rela-
tive harmonic amplitudes are diminished. In the corresponding
modulator [applied to subband filtered white noise and shown in
Fig. 14(e)], it is clear that the speech filtering data and formants
are considered modulation rather than filtering, even with only
11 subband channels. With a 101 channel, 20-Hz Hamming fil-
terbank decomposition [Fig. 14(c)], the filtering effects are even
further removed in demodulation. In the 101 subband modulator
[Fig. 14(f)], because the channel resolution is high enough to fit
between the harmonics, even pitch data is present, in addition to
speech filtering data. These figures demonstrate that, in the case
of demodulating after decomposition, the filtering information
is represented in the array of modulators instead of remaining in
the carrier. It is unclear which of these approaches, no subbands
or a higher number of subbands, is preferable.

Fig. 15. A modulated signal is shown in (a). Note that its spectrum in (c) is
symmetric as a result. If a signal is passed through a subband filter and results
in unequal sidebands, shown in (b), an asymmetric spectrum results, as in (d).
See Fig. 16 for estimated modulators from these signals.

A problem raised by subband decomposition is that it is pos-
sible that the channel filters will unequally distort the modula-
tion components. In this situation, the modulation spectra is not
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Fig. 16. Using subband filters can lead to asymmetric spectra, an example of which shown in Fig. 15. The first row shows the complex modulator (real part in solid,
imaginary in dot-dash) extracted with subband carrier demodulation, with both a spectral center-of-mass estimated carrier and an exact carrier. The bottom row
shows real modulators extracted with Hilbert and linear domain optimization (introduced in Section IV-B). The complex modulator is better mathematically, but a
real modulator has more perceptual relevance. (a) Symmetric signal, Subband carrier demodulation with estimated carrier. (b) Asymmetric signal, Subband carrier
demodulation with estimated carrer. (c) Symmetric signal, Subband carrier demodulation with exact carrier. (d) Asymmetric signal, Subband carrier demodulation
with exact carrier. (e) Symmetric signal, Hilbert. (f) Asymmetric signal, Hilbert. (g) Symmetric signal, Linear Domain Optimization. (h) Asymmetric signal, Linear
Domain Optimization.

Fig. 17. Subband decomposition is often necessary for harmonic signals, but introduces its own problems as a carrier transitions through each passband. (a) shows
the spectrogram of a 6-Hz modulated chirp. The reconstructed carrier after subband demodulation with a 51-channel, 80-Hz Hamming filterbank decomposition
is shown in (b) and contains high levels of spectral spatter, while the extracted wideband Hilbert carrier in (c) is clean. (a) Original. (b) With subbands. (c) Without
subbands.

symmetric within the channel. Atlas et al. suggest that a com-
plex modulator is necessary to properly demodulate a channel
with distortion from subband filtering [2]. Mathematically, this
argument is sound, but it is conceptually difficult to justify the
need for a complex modulator to describe the amplitude enve-
lope of real signals.

To demonstrate this issue, Fig. 15 shows a modulated signal
with a symmetric spectrum, and also a corresponding signal
with the same frequency components but an asymmetric spec-
trum because one sideband is close to the band-edge. Fig. 16
shows a series of modulators, both complex and real, extracted
from these signals. There are two details to note in these plots.
First, there is a significant difference in results between the com-
plex modulators (all extracted with subband carrier demodu-

lation) derived from an estimated carrier [Fig. 16(b)] and an
exact carrier [Fig. 16(d)] in the case of the spectrally asymmetric
signal. Because of the asymmetry, the spectral center-of-mass
estimate will lead to a slightly skewed carrier frequency esti-
mate, resulting in the differences. In the symmetric case, the es-
timate is much more accurate, and so this issue does not arise
(and the complex modulator is not even necessary).

A second aspect of these plots to note is that the real modu-
lators do effectively track the real amplitude of the signal. So,
while the complex modulator mathematically solves the asym-
metric spectrum, the real modulators do contribute valuable in-
formation that is potentially even more relevant perceptually.
Which of these modulators is the desirable outcome is unclear,
and would likely be application specific.
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Furthermore, recombining the post-analysis subbands raises
troubling issues with subband decomposition. Because a de-
modulation process is, by definition, nonlinear, the wideband
modulator and carrier cannot easily be restored from the channel
modulators and carriers. Fig. 17 shows a modulated chirp (a)
and the demodulated carriers that result from Hilbert demodu-
lation with (b) and without (c) subband decomposition. The dis-
tortions added as a result of the subband decomposition are clear
in (b). The wideband demodulation (c) performs well in this case
because the modulator used is non-negative and the carrier has
only one sinusoidal component, conditions that Hilbert demod-
ulation can easily solve.

Recent work [13] has suggested implementing pitch-tracking
filters in order to eliminate inconsistent alignments between the
filters and the components. While this approach improves some
of the issues that arise with a subband decomposition, such as
non-stationary components, the results of this analysis appear
more like those found with sinusoidal peak tracking or a phase
vocoder.

Including the subband decomposition also signals a move-
ment away from modeling the physical sound. By demodulating
channels, spectral effects from filtering are also classified as
amplitude modulation. For example, demodulating speech on
a subband level will classify the spectral variations from the
shifting vowel formants as modulation when in fact these reso-
nances are created by filtering in the vocal tract. Demodulating
without the subband decomposition leaves these filtering effects
in the carrier, while the modulator consists of only relative am-
plitude variations.

We wonder if a subband decomposition should be included in
the demodulation process. We believe the ability of our methods
to demodulate wideband signals without a subband decomposi-
tion is an asset that will allow for further insight into the issue.

VI. DISCUSSION

We have shown a demodulation approach that allows a large
range of signals to be analyzed. The examples presented above
show the strengths and weaknesses of the two demodulation
methods described in this paper.

Both the linear-domain and the logarithmic-domain methods
are able to differentiate between low-frequency and high-fre-
quency modulators. This is an important distinction in a percep-
tual context, and it is a feature that has not been demonstrated
in past demodulation work.

The presented implementation of logarithmic-domain de-
modulation performs very well with single sinusoidal carriers.
For stochastic and harmonic carriers, the cost on the carrier
grows, and so the balance between the modulator and carrier
costs is skewed, leading to carrier components appearing in
the modulator [Figs. 8(b) and 10(b)]. This can be managed by
adding extra weight to the modulator, as seen in Figs. 8(c) and
10(c). However, finding the right weight to select the desired
modulator can be challenging and require several iterations.
This process could be posed as an additional (non-convex)
optimization problem that iterates over several weights and
compares the modulators to find the optimum, which may be
a good direction for future work. However, it seems that the

ideal solution is one that does not require changing the weights
at all. Deriving an implementation that handles stochastic and
harmonic carriers as well as this implementation demodulates
single sinusoidal carriers would be a significant improvement.

The implementation of linear-domain demodulation per-
forms very well, regardless of the carrier. The examples
show that it accurately demodulates harmonic and stochastic
carriers and even real speech, as well as simpler cases. The
method does have two potential weaknesses, though. First, a
linear-domain demodulation is unable to track the sign changes
in suppressed-carrier modulation [Fig. 4(c)]. However, it is
unclear if this ability is necessary for acoustic demodula-
tion. Additionally, the spectral weighting in the cost function
bandlimits the modulator, so the issues with the artifacts in
modulation filtering of the Hilbert envelope are avoided. The
second potential weakness is that the method does not infer any
structure of the carrier, but rather only considers the samples.
This can lead to an extracted modulator that is slightly less than
the original modulator [as seen, for example, in the peak at
0.55 seconds of Fig. 10(d)] because of slight phase differences
between the carrier frequency and the sampling frequency. It
also causes inaccurate demodulation for very noisy signals.
Again, though, it is unclear if this is a relevant distinction in
acoustic demodulation. However, future work to remove these
potential issues would be an improvement.

VII. CONCLUSION

We have introduced here two new methods for demodulation
of audio signals using convex optimization. Each method uses
a different approach to fit the demodulation relationship within
the rules of disciplined convex programming, and, as a result,
each method has its drawbacks. However, the new methods
do contribute many novel additions to modulation signal pro-
cessing. They allow for the definition of a modulator to be
designed and clearly outlined within the cost function, while
previous methods have only offered minimal control.

By solving demodulation as an optimization problem, we ob-
tained clean, low-frequency modulators for harmonic and noisy
signals, also a task that previous methods could not perform.
Because of this improved performance without the necessity for
narrowband decompositions, it is possible to examine the rela-
tionship between subband channel width, such as that seen in
Fig. 14. The methods shown here are the only to date that allow
for this sort of study.

We believe that posing demodulation as an optimization
problem is a very promising direction for this field of re-
search. The decision process between pitch and modulation
corresponds well with the minimization of a summation of
cost functions, and the quality of results presented here for a
wide array of signals demonstrates the exciting potential of the
approach.
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