
Image Classification Using The Web Graph

Dhruv Mahajan
Yahoo! Research

Bangalore
India

dkm@yahoo-inc.com

Malcolm Slaney
Yahoo! Research
Santa Clara, CA

USA
malcolm@ieee.org

ABSTRACT
Image classification is a well-studied and hard problem in
computer vision. We extend a proven solution for classify-
ing web spam to handle images. We exploit the link struc-
ture of the web graph: a web page related to a given cat-
egory is normally linked to other pages describing related
objects. Our approach combines information from the web-
graph structure with semi-supervised learning from all the
unlabeled images to create a superior image-classification
model for multimedia data. We show that fusing image,
text and web-graph features gives a 12% improvement (in
the area under the ROC curve) over content features alone
in an adult image-classification experiment.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology-Classifier
design and evaluation

General Terms
Algorithms

Keywords
Algorithm, image classification, web graph

1. INTRODUCTION
Motivation: Multimedia recognition is a hard problem.
Much effort has been directed towards recognizing objects
and classifying images (and other multimedia data) using
only the pixels in the image. In this paper we demonstrate
that including the context in which an image appears is an
important feature in an image-classification experiment.

We describe a framework for multimedia classification
that exploits the fact that the context of an image provides
useful information for image classification. A cricket website
is likely to point to other websites with cricket-related
information and images. The latest photograph from a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

photographer that uploads hundreds of hockey pictures is
likely to be another hockey picture.

Our solution optimizes a single function of the image
features, the text around the image, and the web graph. We
learn a linear classifier on the image and text features. We
exploit the web graph, or hyperlink information, by doing
graph regularization to constrain the predicted scores to vary
smoothly between the linked pages. We extend a web-page-
spam detection approach [1] to predict the image score in a
single optimization framework.

We test our algorithm on an adult- or offensive-content-
recognition task. While we demonstrate our approach using
an image-classification problem, we believe that the same
formalism applies to other recognition tasks on the web, and
to other types of content networks like Flicker and Facebook.

Our work makes two contributions. We show 12% better
performance (as measured by the area under the ROC curve)
when we add the web graph to content features. We further
show that a form of semi-supervised learning allows us to
benefit from unlabeled images, and thus gain two percentage
points of accuracy.

Related Work: There is much research related to the
work described here. Yet none of this research spans the
important dimensions we consider here.

Image classification is a well-known problem, with work
spread over many decades. The common works explore
different kinds of features, and different kinds of machine-
learning approaches to learn from the data and better
make a decision. Notably, several groups have tackled
the Caltech256 problem, a task where a system must
automatically classify a large set of canonical images into
one of 256 different classes [7].

Several groups have noted that web pages are likely to
connect to other web pages on the same topic [4]. We also
benefit from the (local) coherence of the web. The web-spam
paper by Abernethy [1] gives a good review of algorithms
that incorporate web-graph information in their decisions.
Alas, none of their references applies to images.

Adult-image detection has been studied as a particularly
interesting type of image-classification problem. Starting
with the original work by Forsyth that uses color and texture
features [6] we now have systems that use motion (for video)
[8], but they do not exploit context.

We do not know of any work that uses the web graph to
improve image-classification results. One work [3] creates
a low-dimensional embedding from the web graph for
clustering images. In this work we show how to unite the web
graph and image features to build a better image classifier.

991



2. APPROACH
We extend an approach first popularized in the web-spam

detection domain [1] to the images linked to web pages. For
each image we calculate pixel-based and text-based features
(which are concatenated into a vector xi) and take into
account an image’s position in the web graph (based on the
directed edges E).

2.1 Basic Algorithm
The basic classification algorithm, in this work, is a simple

large-margin linear classifier. There are N web pages. We
have l < N labeled nodes and each label is denoted as yi

with a value of either +1 or -1. We want to find a classifier
w that predicts the correct label for each (labeled point) and
minimizes the loss of the function

Ωw(w) = 1/l

lX
i=1

R(w · xi, yi) + λ1w ·w, (1)

where λ1 is a regularization parameter that sets the
importance of using a small w and limits the complexity of
the decision. The function R(·) controls the effect of errors
and in this work is set to R(s, y) = [1 − s ∗ y]2+, where the
(x)+ operator is equal to max(0, x).

This simple model is enhanced by learning an additional
slack variable per node, zi. The score function (si) for a
page becomes si = w · xi + zi and we minimize

Ωs(w, z) = 1/l

lX
i=1

R(si, yi) + λ1w ·w + λ2z · z, (2)

where z combines the elements of zi in to one vector.
We expect neighboring nodes, as determined by the web

graph, to have similar scores. Hence, we add a regularization

Ωw(w, z) = γ
X

(i,j)∈E

ai,jΦ(si, sj), (3)

where (i, j) ∈ E describes all web nodes that are connected,
γ is another regularization parameter and ai,j is the number
of links from node i to node j. Φ is a function that compares
the scores from two different nodes. There are two kinds
of information flows, symmetric and asymmetric. A simple
choice for Φ is a squared loss term Φs(fi, fj) = (fi−fj)2. An
asymmetric version looks like Φa(fi, fj) = max(0, fj − fi)

2.
We blend these two conditions with

Φ(fi, fj) = α(fi − fj)2 + (1− α) max(0, fj − fi)
2. (4)

The total cost function is

Ω(w, z) = Ωs(w, z) + Ωw(w, z). (5)

In this formula, we want to find the values for a
discrimination vector w and slack variables zi that minimize
the sum of these two different terms: one that says the
labeled nodes are predicted correctly, and all connected
nodes, whether they are labeled or not, have a similar score.
This second term is what allows the system to learn from the
web graph and reflects a form of semi-supervised learning.

2.2 Web-Image Classification
The spam-classification algorithm we described above has

a single feature vector xi associated with each web page.
However, images (and other multimedia objects) are treated
differently on the web. Each image has a separate feature

Figure 1: Graph for web-image classification.

vector where as the web page does not have any features
associated with it. In this section, we propose modifications
to the classification algorithm that allows us to handle web
pages and their images in the same framework. This is one
of the main contributions of our work.

In order to handle multiple images per web page, we
add image nodes to the web graph as shown Figure 1.
We add directional links/edges from the web page to its
corresponding multimedia objects or images (black edges).
These edges have the same asymmetric properties as the
edges in the web graph. Hence, the edge set E in Equation 3
has now web node → image node edges.

Web pages and images nodes have different information
and constraints. We note this missing information and add
a new constraint between a web page and its images. Web
pages contain no feature data—xi does not exist for these
nodes—and are always unlabeled. Let W denote the set
of all web nodes (corresponding to web pages). Then the
(classification) score is

si = zi, i ∈W. (6)

Image nodes, on the other hand, have both features xi and
slack variables zi.

In order to propagate image information to its web page,
we assume that a web page is relevant to the classification
task (label = +1) at hand if even one of its images is relevant.
Hence, a web page takes a score that is the maximum of its
image scores. This is done with an additional regularization
term (red edges in Figure 1) . We encourage consistency by
adding this new term to the loss function

Ωi(w, z) = γ2

X
i∈W

Φs(si, max
(i,j)∈E

j 6∈W

sj). (7)

We sum over all web pages (described by the set W ) and
Φs(·) describes the consistency between the score for web
page i and the maximum of its image scores. Further, since
there are no features associated with the web pages (Eqn. 6),
the corresponding slack variables are not balanced against a
decision based on the feature data. Hence there is no reason
to regularize or limit them in Ωs. Equation 2 becomes

Ωs(w, z) = 1/l

lX
i=1

R(si, yi) + λ1w · w + λ2

X
i 6∈W

zi · zi. (8)

Note the third term sums over the slack variables for images
only. The complete loss function is (Eqns. 3, 7, and 8)

Ω(w, z) = Ωs(w, z) + Ωw(w, z) + Ωi(w, z). (9)

To compute the scores, we jointly optimize w and z using
Newton’s method as detailed in Section 3.2.

992



2.3 Features
We use a combination of text and image features to

describe each image in the web graph. For text features, we
use a search engine to gather the words around each image,
its URL and abstract. We then compute a low-dimensional
feature vector by summarizing the words, after stemming,
in the positive class using a latent-semantic indexing (LSI)
model. Thus for each image we form a 100 dimensional word
histogram.

Likewise, we use a deep-belief network (DBN) or
convolutional neural network (CNN) to represent each image
as a point in a low-dimensional space. DBNs are an auto-
encoder network that reconstructs with minimum error the
original image from the low-dimensional representation. The
specifics of our three-layer DBN are described elsewhere [9].
We reduce the dimensionality of 1024-dimensional image
features to 500 by doing a PCA transformation.

3. APPLYING TO THE WEB
We apply this image-classification algorithm to a portion

of the real web. We use an offensive-content recognition task
to explore the behavior of our image-classification algorithm.

3.1 Data
We started with a connected subgraph (of the entire web)

that contained a number of images that we had already
labeled as offensive or not. This gave us a web graph with a
total of 859k nodes. Then, we consolidated the nodes that
provided little information in our graph by detecting the web
pages that had a single in and out link (and thus no images.)
We removed these unitary nodes from the graph and linked
the incoming web page to the outgoing web destination. By
this process we reduced the graph so it contained 83k web
pages and 211k attached images for a total of 295k nodes.
Only 1.3% of our images are labeled, with 1291 positive
labels and 1405 negative labels.

3.2 Implementation
Given the consolidated web graph, we fetch all images and

precalculat all features. We randomly split the 2696 labeled
images (1291 positive and 1405 negative) into a training set
of size 2000 and a test set of 696 labels. We obtain smaller
training sets by sub-sampling the training set. However, the
testing is always done with the same test set of 696 images.
In order to reduce the result variance for smaller training
sets, we repeat the experiment with 7 different training sub-
samples of that size and then take the median.

Our objective function is convex. Because of the
max function (Eqn. 7), our cost function is no longer
differentiable at a small number of points. However, the
contribution of this term is small (Sec. 4.1). In general, we
did not find this to be an issue in our optimization. We
minimize the function by the iterative Newton method [5].
Each Newton step requires computation of the inverse
Hessian matrix which is very large in our case. The Newton
step is instead computed by solving a system of linear
equation using linear conjugate gradient [5]. The method
involves computing the Hessian vector product which can
be done very fast since our Hessian is sparse.

4. RESULTS
There are two novel aspects to this work. Most

importantly our work includes information from the web
graph when judging image content (Sec. 4.2). A secondary
benefit of our approach is that we can take advantage of
unlabeled data. This algorithm demonstrates a form of semi-
supervised learning (Sec. 4.3). First we describe how the
parameters were tuned.

4.1 Parameter Tuning
Our method requires we determine the values of 6 meta

parameters α, λ1, λ2, γ and γ2 and edge weights ai,j . For
web node → web node edges, ai,j is set to the number of
links from i to j. We found that for most of the web nodes,
ai,j = 1. For web node → image node edges, we found that
ai,j = 2 works well for all the experiments. For α, we did not
see much asymmetric behaviour in the links. Setting α in the
range 0.45 − 0.65 works well for most of the experimental
settings. Hence, we fix α to be 0.55. Similarly, for γ2 in
Ωi(w, z)(Eqn. 7), setting it in a broad range of 0.2 − 0.35
times γ works well. We choose γ2 = .25γ. For choosing
the remaining parameters we held out 20% of our training
data, for each training-set size and experiment, and used it
as a validation set. We used the validation set to find the
parameters λ1, λ2 and γ over a 5 × 5 × 7 grid that gave
us the highest classification score. The results shown in the
subsequent sections are after cross validation.

4.2 Benefit of the Web Graph
In this section, we show the performance of our algorithm.

In order to highlight the role of different components—
image features, text features and web graph, we consider the
different variants of our algorithm. The list is not exhaustive
but clearly demonstrates the role each component plays.
Image features Only: We set the parameters γ and γ2

to zero. λ2 is set to a high value (1000) to force the slack
variables towards zero. This has the effect of learning a
linear classifier on features with a regularizer.
Web Graph Only: We set the feature vector xi at each
image node to be zero. Hence, the only contribution comes
from the web graph.
Text features plus Web Graph: We set the feature
vector xi to the 100-dimensional text vector (Section 2.3).
Image Features plus Web Graph: We set the feature
vector xi to the 500-dimensional image vector (Section 2.3).
Image plus Text features plus Web Graph: We set
the feature vector xi to a 600-dimensional vector formed by
combining the text vector and image vector.

We evaluate our performance by looking at the area
(AUC) under the receiver-operating curves (ROC). ROC
plots the true-positive rate versus the false-positive rate as
we vary a decision threshold.

Figure 2 shows the performance of different versions of
our algorithm as a function of the size of the labeled set.
Since labeling data is expensive, we are interested in how
the algorithm performs as we label more data, and thus
increase the size of our training set. In the best case only
1.3% of the images in our database are labeled.

The bottom line of Figure 2 shows our baseline
performance: a linear classifier operating on only the image
features with no web-link information. Using only the web
graph dramatically improves our results over the image
features, for all training set sizes. This is surprising given

993



125 250  500 1000 2000
0.6

0 .65

0.7

0 .75

0.8

0 .85

0.9

N umber of Labeled P oints

A
re

a 
U

nd
er

 R
O

C
 C

ur
ve

 (
A

U
C

)

 

 

Image Features
W ebgraph
W ebgraph +  Text Features
W ebgraph +  Image Features
W ebgraph +  Image +  Text Features

Figure 2: AUC for variations of our algorithm as we
vary the training size.

that we are trying to classify the image content. Adding text
and image features to the web-graph-based classifier further
improve the results. However, adding text features help only
for the smaller training sets (top magenta curve vs. black
curve). Hence, using all the information available—web
graph, text and image features—produces the best results.
The ROCs shown in Figure 3 using all our training data
further validates our performance.

4.3 Benefit of Semi-Supervised Learning
Table 1 shows the contribution of semi-supervised and

web-graph learning in our task. We can add these two
aspects one by one in our framework. A conventional
image-classification system uses only the labeled images for
training data. This amounts to learning a linear classifier on
the labeled data, so all decisions on the unlabeled nodes are
made using this classifier only (AUC = 0.81). We add the
semi-supervised learning (SSL) [2] aspect by constructing a
K-nearest neighbors graph for the images in our data using
the image features. We then do graph regularization using
our framework. However, the performance goes down (AUC
= .76). This can be because of two reasons. First, our
features may not be strong enough to compute K-nearest
neighbors accurately. Second, the total number of images
is small and hence their nearest neighbors (based on visual
similarity) might not be meaningful.

A more powerful form of semi-supervised learning is
available because of the web graph. The edges in the
graph are now based on contextual similarity between the
linked websites rather than the visual similarities and hence,
provide a more robust signal. This gives us the biggest boost

0 0.2 0 .4 0 .6 0 .8 1
0

0.2

0 .4

0 .6

0 .8

1

False  P ositive  R ate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Image Features
W ebgraph
W ebgraph +  Text Features
W ebgraph +  Image Features
W ebgraph +  Image +  Text Features

Figure 3: ROC for variations of our method.

Table 1: Overall AUC (higher is better, 1.0
is perfect) showing the effects of semi-supervised
learning.

Classifier built using only labeled images 0.8086
Nearest neighbors in feature space 0.755
Labeled images plus web-graph regularization 0.9263
Web graph plus all features and data 0.9465

(AUC = 0.93). Finally, we get the highest performance when
we add the text and image features (AUC = 0.95). Hence,
both semi-supervised and web-graph aspects of our method
are vital for the performance of our algorithm.

5. CONCLUSIONS
We have demonstrated a multimedia-classification system

that combines image, text, and web-graph features. All
of these features are useful, but, as shown in the web-
spam work, the web-graph information, which specifies
which images are close to each other on the Internet, is
most valuable. We anticipate this web-graph information
will benefit other image-classification systems. Since our
multimedia objects live in a connected world, it is important
to include their context when judging their contents.

6. REFERENCES
[1] J. Abernethy, O. Chapelle, and C. Castillo. Graph

regularization methods for web spam detection.
Machine Learning Journal, 2011, to appear.

[2] Y. Bengio, O. Delalleau, and N. Le Roux. Label
propagation and quadratic criterion. In O. Chapelle,
B. Schölkopf, and A. Zien, editors, Semi-Supervised
Learning, pages 193–216. MIT Press, 2006.

[3] D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen.
Hierarchical clustering of www image search results
using visual, textual and link information. In
MULTIMEDIA ’04: Proceedings of the 12th Annual
ACM International Conference on Multimedia, pages
952–959, New York, NY, USA, 2004. ACM.

[4] B. D. Davison. Topical locality in the web. In SIGIR
’00: Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 272–279, New York, NY,
USA, 2000. ACM.

[5] R. Fletcher. Practical Methods of Optimization. John
Wiley & Sons, New York, second edition, 1987.

[6] D. A. Forsyth and M. M. Fleck. Automatic detection of
human nudes. Int. J. Comput. Vision, 32(1):63–77,
1999.

[7] G. Griffin, A. Holub, and P. Perona. Caltech-256 object
category dataset. Technical Report 7694, California
Institute of Technology, 2007.

[8] C. Jansohn, A. Ulges, and T. M. Breuel. Detecting
pornographic video content by combining image
features with motion information. In MM ’09:
Proceedings of the Seventeen ACM International
Conference on Multimedia, pages 601–604, New York,
NY, USA, 2009. ACM.

[9] M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature
learning for deep belief networks. In Advances in Neural
Information Processing Systems (NIPS 2007), 2007.

994


