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Abstract
In this paper, we propose a novel method for obtaining la-
beled training data to estimate the parameters in a super-
vised learning model for automatic chord recognition. To
this end, we perform harmonic analysis on symbolic data
to generate label files. In parallel, we generate audio data
from the same symbolic data, which are then provided to
a machine learning algorithm along with label files to esti-
mate model parameters. Experimental results show higher
performance in frame-level chord recognition than the pre-
vious approaches.

Keywords: Chord recognition, hidden Markov model, su-
pervised learning

1. Introduction
A musical chord is a set of simultaneous tones. Succession
of chords over time, or chord progression, form the core of
harmony in a piece of music. Hence analyzing the overall
harmonic structure of a musical piece often starts with la-
beling every chord. Automatic chord labeling is very useful
for those who want to do harmonic analysis of music. Once
the harmonic content of a piece is known, a sequence of
chords can be used for further higher-level structural analy-
sis where phrases or forms can be defined. Chord sequences
are also a good mid-level representation of musical signals
for such applications as music search, music segmentation,
music similarity identification, and audio thumbnailing. For
these reasons and others, automatic chord recognition has
recently attracted a number of researchers in the Music In-
formation Retrieval field.

Hidden Markov models (HMMs) are very successful for
speech recognition, and gigantic databases with labels accu-
mulated over decades play an important role in estimating
the model parameters appropriately. However, there is no
such database available for music. Furthermore, the acous-
tical variance in a piece of music is even greater than that
in speech in terms of its frequency range, instrumentation,
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dynamics, or duration, and thus a lot more data is needed to
train the models for generalization.

Hand-labeling the chord boundaries in a number of record-
ings is an extremely time consuming and tedious task. In
this paper, we propose a method of automating this daunt-
ing task to provide the models with labeled training data. To
this end, we use symbolic data such as MIDI data to gener-
ate chord names and boundaries as well as to create audio.
Audio and chord boundary information generated this way
are in perfect sync, and we can use them to estimate the
model parameters.

There are several advantages to this approach. First, we
do not need to manually annotate chord boundaries with
chord names to obtain training data. Second, we can gener-
ate as much data as needed with the same notes but different
musical attributes by just changing instrumentation, tempo,
or dynamics when synthesizing audio. This helps avoid
overfitting the models to a specific type of music. Third, suf-
ficient training data enable us to include more chord types
such as 7th, augmented, or diminished.

This paper continues with a review of related work in
Section 2; in Section 3, we describe how we extract the fea-
ture vectors, and explain the model and the method of ob-
taining the labeled training data; in Section 4, we present
empirical results followed by discussions, and draw conclu-
sions in Section 5.

2. Related Work
Sheh and Ellis proposed a statistical learning method for
chord segmentation and recognition [1]. They used the hid-
den Markov models (HMMs) trained by the Expectation
Maximization (EM) algorithm, and treated the chord labels
as hidden values within the EM framework. In training the
models, they used only the chord sequence as an input to the
models, and applied the forward-backward or Baum-Welch
algorithm to estimate the model parameters. The frame ac-
curacy in percent they obtained was about 76% for segmen-
tation and about 22% for recognition, respectively. The poor
performance for recognition may be due to insufficient and
unlabeled training data compared with a large set of classes
(20 songs for 147 chord types).

Bello and Pickens also used HMMs with the EM algo-
rithm [2]. They incorporated musical knowledge into the
models by defining a state transition matrix based on the



key distance in a circle of fifths, and avoided random ini-
tialization of a mean vector and a covariance matrix of ob-
servation distribution, which was modeled by a single mul-
tivariate Gaussian [2]. In addition, in training the model’s
parameter, they selectively update the parameters of inter-
est on the assumption that a chord template or distribution
is almost universal, thus disallowing adjustment of distribu-
tion parameters. The accuracy thus obtained was about 75%
using beat-synchronous segmentation with a smaller set of
chord types (24 major/minor triads only). In particular, they
argued that the accuracy increased by as much as 32% when
the adjustment of the observation distribution parametersis
prohibited. Again, this may be because they not only used
an unsupervised model, but also the training data were in-
sufficient to appropriately estimate the model parameters.

Our approach is based on the work of Sheh and Ellis or
Bello and Pickens in that the states in the HMM represent
chord types, and try to find the optimal path,i.e., chord se-
quence in a maximum likelihood sense. The most prominent
difference in our approach is, however, that we use labeled
training data by which model parameters can be directly es-
timated. Furthermore, we propose a method of automati-
cally obtaining the labeled training data, which removes the
problematic and time consuming task of manual annotation.

3. System
Our system starts with extracting suitable feature vectors
from the raw audio. Like most chord recognition systems, a
chroma vector or a PCP vector is used as the feature vector.

3.1. Chroma Features

A chromagram or a Pitch Class Profile (PCP) is the choice
of the feature set in automatic chord recognition or key ex-
traction since introduced by Fujishima [3]. Perception of
musical pitch involves two dimensions –height andchroma.
Pitch height moves vertically in octaves telling which octave
a note belongs to. On the other hand, chroma tells where it
stands in relation to others within an octave. A chromagram
or a pitch class profile is a 12-dimensional vector represen-
tation of a chroma, which represents the relative intensity
in each of twelve semitones in a chromatic scale. Since a
chord is composed of a set of tones, and its label is only de-
termined by the position of those tones in a chroma, regard-
less of their heights, chroma vectors appear to be an ideal
feature to represent a musical chord or a musical key.

Fujishima developed a realtime chord recognition sys-
tem, where he derived a 12-dimensional pitch class profile
from the DFT of the audio signal, and performed pattern
matching using the binary chord type templates [3]. Gomez
and Herrera proposed a system that automatically extracts
from audio recordings tonal metadata such as chord, key,
scale and cadence information [4]. They used as the fea-
ture vector, a Harmonic Pitch Class Profile (HPCP), which
is based on Fujishima’s PCP, and correlated it with a chord

or key model adapted from Krumhansl’s cognitive study [5].
Similarly, Pauws used the maximum-key profile correlation
algorithm to extract key from the raw audio data, where
he averaged the chromagram features over variable-length
fragments at various locations, and correlate them with the
24 major/minor key profile vectors derived by Krumhansl
and Kessler [6]. Harte and Sandler used a 36-bin chroma-
gram to find the tuning value of the input audio using the
distribution of peak positions, and then derived a 12-bin,
semitone-quantized chromagram to be correlated with the
binary chord templates [7].

There are some variations when computing a 12-bin chro-
magram, but it usually follows the following steps. First, the
DFT of the input signalX(k) is computed, and the constant-
Q transformXCQ is calculated fromX(k), using a loga-
rithmically spaced frequencies to reflect the frequency res-
olution of the human ear [8]. The frequency resolution of
the constant-Q transform follows that of the equal-tempered
scale, which is also logarithmically based, and thekth spec-
tral component is defined as

fk = (21/B)kfmin, (1)

wherefk varies fromfmin to an upper frequency, both
of which are set by the user, andB is the number of bins
in an octave in the constant Q transform. OnceXCQ(k) is
computed, a chromagram vectorCH can be easily obtained
as:

CH(b) =

M−1
∑

m=0

∣

∣XCQ(b + mB)
∣

∣, (2)

whereb = 1, 2, · · · , B is the chromagram bin index, and
M is the number of octaves spanned in the constant Q spec-
trum. For chord recognition, onlyB = 12 is needed, but
B = 24 or B = 36 is also used.

In our system, we used as feature vectors 12-bin Quan-
tized chromagram proposed by Harte and Sandler [7], which
compensates a possible mistuning present in the recordings
by reallocating the peaks based on the peak distribution.

3.2. Hidden Markov Model
A hidden Markov model [9] is an extension of a discrete
Markov model, in which the states arehidden in the sense
that an underlying stochastic process is not directly observ-
able, but can only be observed through another set of stochas-
tic processes.

We recognize chords using a 36-state HMM. Each state
represents a single chord, and the observation distribution
is modeled by a single multivariate Gaussian in 12 dimen-
sions defined by its mean vectorµi and covariance matrix
Σi, wherei denotesith state. We assume the features are
uncorrelated with each other, and thus use diagonal covari-
ance matrix. State transitions obey the first-order Markov



property;i.e., the future is independent of the past given the
present state. In addition, we use an ergodic model since we
allow every possible transition from chord to chord, and yet
the transition probabilities are learned.

Once the model parameters – initial state probabilities,
state transition probabilities, and mean vector and covari-
ance matrix for each state – are learned, the Viterbi algo-
rithm is applied to the model to find the optimal path,i.e.,
chord sequence, in a maximum likelihood sense given an
input signal.

In our model, we have used 36 classes or chord types –
major, minor, and diminished triads for each pitch class. We
treated major and dominant seventh chords as belonging to
major triads, minor sevenths to minor triads, and diminished
sevenths to diminished triads. We found this class size ap-
propriate in a sense that it lies between overfitting and over-
simplification.

3.3. Labeled Training Data

In order to train a supervised model, we need label files with
annotated chord boundaries. To automate this laborious pro-
cess, we use symbolic data to generate label files as well as
audio data. To this end, we first convert a symbolic file to
a format which can be used as an input to a chord analysis
tool. Chord analyzer then performs harmonic analysis and
outputs a file with root information and note names from
which complete chord information (i.e., root and its sonor-
ity - major, minor, or diminished triad/seventh) is extracted.
Sequence of chords are used as ground-truth or labels when
training the HMM. In parallel, we use the same symbolic
files to generate audio files using a sample-based synthe-
sizer. Audio data generated this way are in sync with chord
label files obtained above, and are enharmonically rich as in
real acoustic recordings. Figure 1 illustrates the overview of
the system.

4. Implementation and Experiments
As shown in Figure 1, our system for generating labeled
training data has two main blocks running in parallel. First,
harmonic analysis is performed on symbolic data. We used
symbolic files in Humdrum data format. Humdrum is a
general-purpose software system intended to help music re-
searchers encode, manipulate, and output a wide variety of
musically-pertinent representations.1 For harmonic anal-
ysis , we used the Melisma Music Analyzer developed by
Sleator and Temperley.2 The Melisma Music Analyzer takes
a piece of music represented by an event list, and extracts
musical information from it such as meter, phrase struc-
ture, harmony, pitch-spelling, and key. By combining har-
mony and key information extracted by the analysis pro-
gram, a complete Roman-numeral analysis is performed,

1 http://dactyl.som.ohio-state.edu/Humdrum/
2 http://www.link.cs.cmu.edu/music-analysis/
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Figure 1. Overview of the system.

from which we can generate label files with sequence of
chord names.

The analysis program was tested on a corpus of excerpts
and the 48 fugue subjects from theWell-Tempered Clavier,
and the harmony analysis and the key extraction yield the
accuracy of 83.7% and 87.4%, respectively [10].

In the near feature extraction block in our system, MIDI
files are synthesized using Timidity++ using a GUS (Glavis
UltraSound) instrument patch. Timidity++ is a free software
synthesizer, and converts MIDI files into audio files in a
WAVE format.3 It uses a sample-based synthesis technique
to generate enharmonically rich audio with upper partials as
in real acoustic recordings. The raw audio is downsampled
to 11025 Hz, and 12-bin chroma features are extracted from
it with the frame size of 8192 samples and the hop size of
2048 samples. The chroma vectors are then used as input to
the HMM along with the label files obtained above.

As a training data set, we used 175 files of Haydn’s String
Quartets in a Humdrum data format at the Center for Com-
puter Assisted Research in the Humanities at Stanford Uni-
versity.4 These files were converted to a format which can
be used in the Melisma Music Analyzer as well as to a MIDI
format using the tools developed by Craig Sapp.5 We used
acoustic piano samples to generate audio. The audio data
synthesized from these MIDI files is about 7.5 hours long,
and contains about 145,000 frames in total.

Figure 2 shows a transition probabilities matrix and tran-

3 http://timidity.sourceforge.net/
4 http://www.ccarh.org/
5 http://extras.humdrum.net/



sition probabilities for C major chord estimated from the
training data set. It can be observed that the transition matrix
is strongly diagonal since chord duration is usually longer
than the frame length, and thus the state does not change for
several frames. However, chord progression based on music
theory can also be found in transition probabilities, for ex-
ample, in the case of C major chord. As mentioned, it has
the largest probability of staying within the same state,i.e.,
within C major chord, but has comparably higher probabil-
ities for making a transition to specific chords like F major,
G major, or D minor chord than to others, as shown in the
right figure. F major and G major have fifth-tonic relation-
ships with C major, and transitions between them happen
very often in Western tonal music. C major chord is also
a dominant chord of F minor, and therefore a C major to F
minor transition is frequent as well.

Transition probabilities matrix
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Figure 2. 36x36 transition probabilities matrix and transition
probabilities for C major chord. Axes are numbered in the
order of major, minor, and diminished chords.

Figure 3 exemplifies the observation distribution param-
eters estimated from the training data for C major chord. On
the left is the mean chroma vector for C major chord. It is
obvious that it has three largest peaks at chord tones or at
C, E, and G, as expected. In addition, we can also see rel-
atively large peaks at D and B, which come from the third
harmonics of G and E, respectively. Covariance matrix for
C major chord is also consistent with what is expected from
the music theoretical knowledge. Chord tones or C, E, and
G are strongly correlated with themselves whereas very low
correlation was found with D#, F#, or G#.
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Figure 3. Estimated mean chroma vector and covariance ma-
trix for C major chord

4.1. Empirical Results
We tested our model on the actual recording of Bach’s Pre-
lude in C major performed by Glenn Gould. It is approx-
imately 140 seconds long, and contains 753 frames. Test

data first goes through the chroma analysis which outputs
12-bin quantized chroma feature vectors. These feature vec-
tors are then fed into the trained HMM. Recognition is ac-
complished as the Viterbi algorithm finds the optimal path
given the model parameters and the input observation vec-
tors. We compared the output of the model, which is a se-
quence of frame-level chord names, with the hand-marked
ground-truth to make scores for frame rate accuracy.

In computing scores, we only counted exact matches as
correct recognition. We tolerated the errors at the chord
boundaries by having some time margins of a few frames
around the boundaries. This assumption is fair since the
ground-truth was generated by human by listening to a piece,
which can’t be razor sharp. Figure 4 shows a recognition ex-
ample from the test data.

As can be seen in Figure 4, estimated chord boundaries
are very closely aligned with the ground-truth boundaries.
Furthermore, all chord names are also correctly recognized.
As mentioned in Section 3.2, dominant seventh chords were
recognized as their root triads, which we treated as correct
recognition. The overall frame-level accuracy was about
93.35%.

Except for some sporadic errors, most consistent errors in
the test data came from the confusion between A minor sev-
enth chord and C major chord. A minor seventh is composed
of four notes – A, C, E, and G – in which C, E, and G are
also chord tones of C major triad. Since we treated A minor
triad and A minor seventh as one class, it is highly likely
that A minor seventh is misrecognized as C major triad in
the presence of a G note, which was the case.

Furthermore, the preceding chord was C major triad, and
thus it is a most likely decision for the system to stay in
the same state of C major chord rather than jumping to an-
other state unless there is a large change in the observation
vectors. We expect that the system will be less sensitive to
this sort of confusion if we increase the class size to include
seventh chords and train our model on more data.

It is hard to directly compare performance of our system
with previous work since we are using different type of mu-
sic for testing as well as for training. But we believe our
high performance, when training on synthetic pieces and
testing on live recordings, will only get better as we add
more pieces to our training collection and add additional in-
strumentations.

5. Conclusion
The main contribution of this work is the automatic gener-
ation of labeled training data for a machine learning model
for automatic chord recognition. By using the chord labels
with explicit segmentation information, we directly estimate
the model parameters in an HMM.

In order to accomplish this goal, we have used symbolic
data to generate label files as well as to create audio files.
The rationale behind this idea was that it is far easier and
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more robust to perform harmonic analysis on the symbolic
data than on the raw audio data since symbolic files such
as MIDI files contain noise-free pitch information. In addi-
tion, by using a sample-based synthesizer, we could create
audio files which have enharmonically rich spectrum as in
real recordings.

As feature vectors, we used 12-bin tuned chroma vec-
tors which have been successfully used by others for the
chord recognition application. We have defined 36 classes
or chord types in our model, which include for each pitch
class three distinct sonorities – major, minor, and dimin-
ished. We treated seventh chords as their corresponding root
triads, and disregarded augmented chords since they very
rarely appear in tonal music.

After the model parameters were estimated from the train-
ing data, unseen test input of real recording was fed to the
model, and the Viterbi algorithm was applied to find the best
probable state path,i.e., chord sequence, at the frame rate.
Experiments showed very promising results.

In this paper, we trained our model only on piano mu-
sic, and tested with piano music. In the near future we plan
to include more training data with different instrumentation
and genre to make our system more general to all kinds of
music.
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