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PREFACE

We have not succeeded in solving all of your problems. The answers we
have found only serve to raise a whole new set of questions. In some ways we
are as confused as ever, but we feel that we are confused on a higher level and
about more important things.

-~ Gary S. Peterson
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ABSTRACT

Slaney, Malcolm Graham. Ph.D., Purdue University. May 1985. Imaging with
Diffraction Tomography. Major Professor: Avinash C. Kak.

This work reviews the theory and limits of first order diffraction tomogra-
phy and studies iterative techniques that can be used to improve the quality of
tomographic imaging with diffracting sources. Conventional (straight-ray)
tomographic algorithms are not valid when used with acoustic or microwave

energy. Thus more sophisticated algorithms are needed.

First order diffraction tomography uses a linearized version of the wave
equation and gives an especially simple reconstruction algorithm. This work
reviews first order approximations to the scattered field and studies the quality
of the reconstructions when the assumptions behind these approximations are
violated. It will be shown that the Born approximation is valid when the phase
change across the object is less than 7 and the Rytov approximation is valid

when the refractive index changes by less than two or three percent.

Better reconstructions will be based on higher order approximations to the
scattered field. This work describes two fixed point algorithms (the Born and
the Rytov approximations) and an algebraic approach to more accurately cal-
culate the scattered fields. The limits of each of these approaches is discussed

and simulated results are shown.

Finally a review of higher order inversion techniques is presented. Each of
these techniques is reviewed and some of their limitations are discussed.



