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Abstract

Our goal was to see how much of the affective message we could recover using simple acoustic measures of the speech

signal. Using pitch and broad spectral-shape measures, a multidimensional Gaussian mixture-model discriminator

classified adult-directed (neutral affect) versus infant-directed speech correctly more than 80% of the time, and classified

the affective message of infant-directed speech correctly nearly 70% of the time. We confirmed previous findings that

changes in pitch provide an important cue for affective messages. In addition, we found that timbre or cepstral coef-

ficients also provide important information about the affective message. Mothers� speech was significantly easier to

classify than fathers� speech, suggesting either clearer distinctions among these messages in mothers� speech to infants,

or a difference between fathers and mothers in the acoustic information used to convey these messages. Our research is a

step towards machines that sense the ‘‘emotional state’’ of a speaker.

� 2002 Elsevier Science B.V. All rights reserved.

1. Vocal expressions of affect

The goal of affective computing is to design

machines that understand and respond to human

emotions (Picard, 1997). Although in its infancy,

this field has the potential to alter dramatically the
way that humans interact with machines, by al-

lowing machines to adapt their operations in re-

sponse to users� emotions.

Emotions are complex, transient and ephemeral

experiences, comprising both public and private

components. Researchers have taken a variety of

approaches to the study of affect. Some investi-
gators have looked at the private aspect, measur-

ing the complex internal physiological changes

that accompany human emotions; others have

examined the public aspect, studying external be-

haviors such as facial or vocal expressions of

emotion. We adopt the latter approach by inves-

tigating how various aspects of speech prosody (the

pitch, rhythm and loudness of speech) are related
to vocal expressions of emotion.

Whichever aspect of emotions is chosen for

study, researchers must gain access to objectively

identifiable emotional episodes that are both gen-

uine and spontaneous. This requirement turns out

qThis paper presents an extended analysis and description of

results that we published earlier (Slaney and McRoberts, 1998).

We have reanalyzed our infant-directed data, adding adult-

directed utterances, which we consider to have a neutral

affective message. We now use standard software for Gaussian

mixture-model classifiers, improving performance slightly.
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to pose a significant problem for both logistical

and ethical reasons. Either we must follow people

around, waiting for pleasant or unpleasant events

to occur so that we can capture our subjects�
spontaneous responses, or we must manipulate

situations so as to elicit such responses. Since both

alternatives have obvious practical and ethical

limitations, researchers have typically opted to

study actors who portray emotional expressions

by reading standardized texts in varying tones of

voice. Such expressions, however, only approxi-

mate genuine emotional expressions. Actors may
be good at communicating affect, but their inten-

tion is to convey a believable feeling, rather than

necessarily to reflect accurately the way that peo-

ple normally express that feeling. In particular,

only a subset of the important cues that people

normally use might be present in an actor�s por-

trayal or those present might be exaggerated.

Thus, when we study an actor, we know neither
what is missing nor what has been added.

A promising way to study genuine expressions

of emotions is to observe parents as they speak to

their infants; such infant-directed speech is often

highly affective and is undeniably spontaneous.

For example, whether a parent praises a young

infant with ‘‘Goood girrlll!!’’ for the baby�s first

steps, or issues a strong prohibition, ‘‘NO!
STOP!!’’ when a toddler is about to pull a lamp off

a table, there is little doubt about the affective

content, the communicative intent, or the sponta-

neity of the vocalization. Fernald and her col-

leagues (Fernald et al., 1989; Fernald, 1989;

McRoberts et al., under review) pioneered the

study of how adults convey affective and prag-

matic messages to infants by recording parents
talking to their infants during spontaneous inter-

actions in a variety of naturalistic settings. We

adopted this approach to collecting genuine and

spontaneous affective vocalizations. Our goal was

to see how much of the affective message we could

recover using simple acoustic measures of the

speech signal.

We studied how adults convey affective mes-
sages to infants using prosody. We analyzed

speech with low-level acoustic features and dis-

criminated approvals, attentions, and prohibitions

from adults speaking to their infants. We built

automatic classifiers to create a system, BabyEars,

that performs the task that comes so naturally to

infants. We believe that adult-directed speech can

have the same affective messages, and can have the
same prosodic patterns, albeit attenuated, as the

speech that we studied.

BabyEars discriminates adult-directed (neutral

affect) versus infant-directed speech correctly more

than 80% of the time, and classified correctly the

affective message of infant-directed speech nearly

70% of the time. It judged certain types of speak-

ers� affective messages more accurately than it did
others. Specifically, BabyEars classified female

speech more accurately than it did male speech.

We do not know whether this result was an artifact

of our analysis techniques (e.g., our selection of

acoustic features) or whether male and female

speakers generated different kinds of speech, either

in general or specifically in our laboratory envi-

ronment.
In this paper, we describe previous work on

vocal expressions of emotions (Section 2), our data

collection (Section 3), our signal-processing tech-

niques (Section 4), and our results (Section 5).

2. Affect and prosody

Researchers from psychology, child develop-

ment, music and engineering have studied the

acoustic correlates of vocal expressions of emo-
tion. In early studies (e.g., Skinner, 1935; Fair-

banks and Pronovost, 1939) actors spoke prepared

texts in varying tones of voice representing differ-

ent affective states. The results suggested that

various prosodic parameters, such as pitch range,

intensity and speech rate, correlate with the dif-

ferent affective tones. Later studies using similar

approaches (e.g., Williams and Stevens, 1972;
Scherer, 1986) confirmed a role for prosodic pa-

rameters. However, the informativeness of these

studies was limited by the use of univariate sta-

tistical measures and by methodologies that relied

on the use of prepared texts rather than sponta-

neous speech.

Recently, more sophisticated acoustic analyses

and multivariate statistical classifiers have been
applied to the study of vocal expressions of emo-
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tion. For example, Roy (Roy and Pentland, 1996)

analyzed the pitch, energy and spectral tilt of re-

corded positive and negative messages; linear dis-

criminant analysis correctly classified the affective
valence 70–75% of the time.

We used infant-directed speech in our study

because of its clear and unambiguous style. Re-

searchers studying infant development and lan-

guage acquisition observed that, when mothers in

various cultures speak to infants, they often use a

special speech register that includes higher pitch

and wider pitch range (e.g. Garnica, 1977; Fergu-
son, 1964). Fernald highlighted the significance of

this ‘‘infant-directed’’ speech prosody in several

studies. One study demonstrated the ubiquitous-

ness of infant-directed speech prosody by showing

that parents (mothers and fathers) from various

cultural and language backgrounds consistently

used higher pitch and wider pitch range when

talking to their infants than when talking to adults
(Fernald et al., 1989). Another study focused on

the communicative aspects of infant-directed

speech prosody, showing that infants attend longer

and smile more when listening to the exaggerated

intonation of infant-directed speech than to adult-

directed speech by the same speaker (Fernald,

1985).

These findings and others are consistent with
the hypothesis that there are two important com-

municative functions of infant-directed speech

prosody. One is an attentional function: The

prosody of infant-directed speech serves to engage

and maintain the attention of infants. The other is

the communication of affect or emotion. Since

infants smile more when listening to infant-di-

rected speech, it appears that parents are often
communicating positive affect in their speech to

their young infants.

In another study, Fernald (1989) suggested that

the prosodic cues in adults� affective expressions to
infants are clearer than are cues in similar ex-

pressions to adults. In Fernald�s study, adults were
recorded speaking spontaneously to their infants

and then to their spouses in role-playing situations
calling for similar affective messages (approval,

prohibition, comfort, attention bid and game ini-

tiation). After the researchers low-pass filtered the

utterances at 400 Hz to remove most of the for-

mant information, listeners were able to identify

the affective message in 60–80% of the infant-

directed utterances, but in only 30–40% of the

adult-directed utterances. Therefore, it appears the
affective messages in infant-directed speech are

expressed more clearly or understandably than in

adult-directed speech. In a related study, Fernald

showed that infants respond with appropriate

affect to infant-directed approvals and prohibitions,

even when the language is unfamiliar to them

(Fernald, 1993). Thus, these messages may be ex-

pressed consistently across languages and cultures.
Although these studies show that some affective

messages are clearly expressed in infant-directed

speech and are responded to by young infants,

they leave open the question of precisely how these

messages are communicated. One approach to

answering this question is to study the shape of the

intonation contour of utterances that express

various communicative functions, such as praises
and prohibitions. Several studies have used this

approach, typically by recording spontaneous in-

fant-directed speech and then classifying the pitch

contours of the various utterance types into cate-

gories such as rising, falling and bell shaped

(Papousek and Papousek, 1991; Stern et al., 1982).

The results of these studies are difficult to inter-

pret, in part because of the subjectiveness of es-
tablishing the contour shape, but they do suggest

that specific intonation contour shapes may be

associated with specific communicative intents.

For example, Stern and Papousek report that bell-

shaped or rise–fall contours often are used by a

parent who is praising the infant. Fernald (1992)

concurs, and also suggests that prohibitions are

often associated with short, falling contours.
However, the predictive power of these observa-

tions is unclear, because these studies did not in-

clude any way to compare the categorization or

classification power of the contour shapes.

A different approach to relating prosodic form

to communicative function in infant-directed

speech is to look at a variety of prosodic features,

such as mean pitch (F0) and pitch range, rather
than to focus on intonation contour shapes. Tak-

ing a cue from studies of animal communication,

McRoberts, Fernald and Moses (McRoberts

et al., under review) used discriminant analysis to
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establish the ability of 24 prosodic features to

distinguish among three types of infant-directed

utterances (attention, approval, prohibition) made

by mothers in four language groups. Not only was
this approach successful within individual lan-

guages, but also a single model incorporating just

eight prosodic features categorized 58–69% of ut-

terances successfully across all four languages.

Katz and his colleagues (Katz et al., 1996) com-

pared the ability of prosodic features and intona-

tion contours to classify three communicative

functions in infant-directed speech (attention, ap-
proval and comfort). They used curve-fitting tech-

niques to remove some of the subjectiveness of

classifying intonation contours in previous studies.

Multivariate statistical analysis correctly classified

69% of the utterances. The contours and features

had equal predictive power in these classification

tests.

Note that infants operate on aspects of the
vocal signal different from those used by either

adults or current speech-recognition systems. In-

fants understand the prosodic message long before

they understand the linguistic message, whereas

speech-recognition systems generally analyze the

words and ignore the prosody (Fernald, 1993). For

adults, the words and prosody of an utterance

normally contribute to both the linguistic and the
affective message. For example, the words ‘‘yeah,

right’’ can convey a positive message or a resigned

negative message, depending on pitch and timing.

In many situations, minimal prosodic information

conveys much information about the intent of the

message. Thus, to improve the recognition and

comprehension of speech by computers, some

speech researchers have added information about
the prosody of speech to conventional speech-

recognition systems information about the pros-

ody of the signal (Price et al., 1991).

Our work builds on previous work in several

ways. We use infant-directed speech as an example

of a universal emotional communication. As we

describe in Section 3, our data are from sponta-

neous and natural speech that is representative of
universal affective communication. To classify the

emotional content of this speech, we built the

statistical classifiers described in Section 4. Be-

cause the prosody that adults use when speaking

to infants appears simple, some researchers have

suggested detecting and classifying the shape of the

pitch contour. Thus a sharp upward rise in pitch

might mean something different from a long, slow
glide. BabyEars does not do this kind of analysis

directly. However, our technique of splitting the

utterance into thirds allows us to capture some of

this information and then a statistical classifier can

determine the utility of the information.

3. Data collection

Our study comprised two experiments. First, we

collected acoustic data from parents talking to

their infants. Then, different adult listeners judged

(1) whether each utterance was best classified as an

approval, attention or prohibition, and (2) the
strength of the message. We initially considered

only infant-directed speech, but later reanalyzed

our recordings to extract neutral, or adult-directed

utterances.

3.1. Acoustic data

We recorded six mothers and six fathers while

each was interacting with their 10 to 18-month-old

infant in a quiet room. Each recording session

lasted about 1 h, during which each parent was

asked to play and otherwise interact normally with

their child. Several toys were placed in the room.
We asked the parents to use only their voices to

keep their child away from several ‘‘dangerous’’

items, such as lamps and microphones. An exper-

imenter stayed in the room to oversee the experi-

ment and to encourage verbal interaction. The

audio samples that we collected were spontaneous

and natural.

We recorded two channels of audio. A light-
weight headset microphone (Countryman hyper-

cardioid Isomax headset microphone, and a Sony

WRT-820 radio transmitter) was used as the pri-

mary source for the parents� voices. A second

microphone recorded the audio from all the par-

ticipants (experimenter, child, and parent). Both

channels were recorded directly to a computer�s
hard disk at 16-bit resolution at a 44 kHz-sam-
pling rate, and then were downsampled to 22 kHz.
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The results reported here are for only those data

collected with the headset audio channel. (The

second, environmental microphone channel was

reserved for future research.)
A trained research assistant extracted discrete

utterances, placed each into its own disk file, and

classified each as being in one of three classes of

vocalizations: approval, attention and prohibition.

(We originally included a class of data for en-

couragement, but dropped it when we found that

we could not select appropriate utterances consis-

tently.) Utterances were defined as a single sen-
tence or phrase bounded by silence longer than

the interword gaps and were from 0.53 to 8.9 s

long. Although adult listeners independently clas-

sified each utterance (see Section 4.2), only the

segmenter had access to the surrounding audio;

she thus was assumed to be able to classify

the meaning of each utterance more accurately

than the listeners in our second experiment.
Therefore, we used the segmenter�s labels as true

values.

Typical examples of the three categories that we

use follow (the prosodic contours are, of course,

missing):

Approval: ‘‘Wow!’’ ‘‘Yea. Good Boy.’’

Attention: ‘‘Becca!’’ ‘‘Nicholas, here!’’ ‘‘An-

thony?’’
Prohibition: ‘‘That�s not for you.’’ ‘‘Don�t go in

there!’’

For each parent–infant pair, we selected and

classified 30–50 utterances, for a total of 509 in-

fant-directed utterances (212 approvals, 149 at-

tentions and 148 prohibitions).

We selected the infant-directed speech samples

based on the criterion that they have a clear af-
fective message. For many applications, however,

we want to know both whether there is an affective

message as well as what that message is. To answer

the first question, we needed samples of speech

that had little or neutral affective content. Thus,

we selected an additional 185 adult-directed ut-

terances from the original audio files. Most such

utterances were simple informational statements
or questions directed to the experimenter in the

test room. We did not pick any utterances where

the parent was mimicking the infant. We analyzed

a total of 694 utterances.

3.2. Adult listeners’ assessments

We asked seven adults, unrelated to the parents

in the initial experiment, to listen to each utter-
ance, both to measure their agreement with our

segmenter�s classifications and to get an estimate

of the strength of the affective message. These

adults, who had no training in either linguistics or

psychology, listened to each segmented infant-

directed utterance and judged its category (ap-

proval, attention or prohibition) and strength (on

an arbitrary scale from 1 (weak) to 5 (strong)). The
listeners did not know our research hypothesis and

were neither trained nor instructed to listen spe-

cifically to prosody.

4. Analysis

BabyEars analyzes speech using three classes of
features: pitch, broad spectral shapes and energy

variations. In brief, we hypothesized that speech

that was slowly and smoothly varying would in-

dicate approval, whereas sounds that changed

quickly would be attention bids or prohibitions.

BabyEars measures several variations of these

parameters. It uses multi-dimensional Gaussian

mixture models (GMMs), described in Section 4.2,
to model the probabilities of the data, and to

choose the most likely affective class. We analyzed

BabyEars� ability to classify the 694 utterances.

4.1. Signal processing

BabyEars processes each manually segmented

sound file automatically at a frame rate of 50 Hz.

A speech–silence discriminator further segments

each sound file at phrase boundaries (Lamel et al.,

1981). BabyEars chooses the longest phrase in
each file for additional processing. We evaluated

our performance using the speech–silence discrim-

inator, instead of relying on human segmentation,

because we wanted a completely automatic system

for classifying affect from an open microphone.

For analysis, BabyEars processes each utterance

as a whole, then splits each utterance into thirds

(beginning, middle, and end) by time duration as
shown in Fig. 1. Thus, for each feature––for
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example, the pitch range––we have four measure-
ments over different time periods. BabyEars com-

putes three types of analyses on each temporal

period of each utterance: pitch, cepstral or spectral-

shape changes, and energy. Detailed descriptions

of the eight analysis measures that BabyEars used

in this study are given in Appendix A.

BabyEars analyzes the pitch of each utterance

using a high-quality dynamic-programming algo-
rithm (Talkin, 1995). The pitch module produces

estimates of the speech signal�s pitch, measured in

Hertz. BabyEars then computes the base 2 log of

this number to collapse the pitch estimate into

octaves and to put the measurement on a percep-

tual scale. BabyEars does not do any postpro-

cessing to correct for possible octave errors. We

chose Talkin�s pitch detector because it gave the
fewest octave errors in our informal tests. 2 No

pitch detector is perfect. The results presented here

should be considered a lower-bound on perfor-

mance: Fewer pitch errors will make the classifier�s
job easier and the performance higher.

BabyEars computes several statistics related to

the pitch: the variance, slope, range (maximum

minus minimum) and mean. BabyEars also mea-

sures two statistics of the frame-by-frame delta

pitch: the mean delta pitch, and the mean of the

absolute delta pitch. The mean delta pitch is sim-

ilar to the slope measurement. When either frame�s
pitch is undefined, because it is unvoiced, the
delta-pitch measures are undefined and do not

enter into the calculation.

BabyEars uses mel-frequency cepstral coeffi-

cients (MFCC) (Hunt et al., 1980) to characterize

the broad spectral shapes in the utterance. MFCC

parameters are often used in speech recognition as

a simple representation of the acoustic waveform.

We use MFCC as an acoustic measure of the ar-
ticulatory configuration. We wanted to investigate

whether the speed with which these parameters

changed would be a useful feature for differenti-

ating between prohibitions and approvals. Thus,

BabyEars measures the mean frame-by-frame

change in the MFCC parameters during each

segment of the utterance. In this calculation,

BabyEars ignores the energy, or C0 component,
and sums the absolute value of the changes in the

remaining coefficients.

Note that MFCC does not attempt to measure

the formant frequencies directly. Instead, MFCC

gives a multi-dimensional representation of the

vocal-tract configuration, much like linear-predic-

tive coding does. We use MFCC in this work be-

cause it has allowed researchers to succeed in
previous speech-recognition experiments.

Finally, BabyEars also computes the variance

of the energy in dB in each frame, across each

utterance.

4.2. Classification

BabyEars uses a multidimensional discrimina-

tor to assign each utterance to a class. We judged

BabyEars� performance on its ability to assign the
same affective label that humans used.

Fig. 1. We computed features based on three different portions

of each utterance and the entire (global) properties of the ut-

terance. The lower graph shows the pitch estimate for one ut-

terance, with the four slope measurements shown.

2 Droppo (Droppo and Acero, 1998) reports that the

standard deviation of errors from Talkin�s pitch detector was

from 0.34–0.74% in their tests.
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We trained the GMMs that BabyEars uses to

recognize our data. In all results reported in this

paper, we used the Netlab GMM software (Nab-

ney, 2001) in MATLAB. In a GMM, we find a set
of multidimensional Gaussians that combine to

model the overall probability of one class of data

in the given feature space. Thus, for each class of

data, we form an estimate of the probability that

the feature vector assumes the value x (in a d-

dimensional space) by adding M of these Gaussian

‘‘bumps’’ (Bishop, 1995),

P ðxÞ ¼
XM
j¼1

Pj/jðxÞ:

Here Pj is the weighting of the jth Gaussian and

/jðxÞ is a Gaussian probability given by

/jðxÞ ¼
1

ð2pÞd=2 Rj

�� ��1=2
� exp � 1

2
x
�

� lj

�t
R�1

j x
�

� lj

�� �
;

and lj and Rj describe the Gaussians that we used

to model this class of data: lj is the mean, and Rj is

the covariance. Each Gaussian has a diagonal

covariance, filling the prosodic vector space with

Gaussian ellipses, each with its axes aligned with

the coordinate system. We build a classifier by

comparing the posterior probabilities from each

model and choosing the largest. (This model as-
sumes that all classes are equally likely to occur

and that all mistakes incur the same cost.)

The modeling power of a GMM is related to the

number of Gaussians, M, that we use to model

each class of data. More Gaussians produce more

accurate models of the data, but also carry an in-

creasing risk of overfitting the training data.

BabyEars� performance as a function of the num-
ber of Gaussians, is shown in Fig. 2. Based on this

result, we use 10 Gaussians per model in all the

remaining trials because classification performance

was near the maximum. We obtained similar re-

sults with optimal linear discriminators.

We built optimal classifiers using greedy selec-

tion. At each step, we trained three sets of GMMs,

one set for each class, with the current set of fea-
tures and each remaining feature. We then chose

the feature that resulted in the best performance,

and added that feature to the set. In this way, we

found an approximation to the best features for

making this classification. This test gave us infor-

mation about which features were adding the most
information to the classification decision.

The errors that we report are naturally biased

by the relative frequency of the affective classes in

our data set. Since test samples were drawn at

random from the data that we collected, we tested

with more approval utterances than prohibition

utterances. Although this choice slightly biased

our results, we do not believe that it changes our
overall conclusions.

4.3. Bootstrapping

Since we had a limited set of data, we used the

‘‘0.632’’ bootstrapping procedure (Efron and Tib-

shirani, 1993) to estimate BabyEars� performance

and the variance of our estimates. We trained our

classifiers with a set of data, chosen randomly with

replacement, that was equal in size to the original

data set. We tested BabyEars� classifiers with all
data that were not used in training. We repeated

Fig. 2. Classification performance in a three-way test as a

function of the number of Gaussians used to model each class�
probability distribution. When we used a small number of

Gaussians, we did not have the power to capture the true dis-

tribution; a large number of Gaussians resulted in overtraining.

Both extremes lowered performance. We have plotted one

standard-deviation error bars calculated by replicating our

training and testing procedure 100 times in the ‘‘0.632’’ para-

digm using all 32 features and our very strongest affective data

(see Fig. 4).
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this task 100 times per discriminator, and then

averaged the results to find an estimate of the mean

and standard deviation of the recognizer�s perfor-
mance with that set of features.

In bootstrapping, we estimate the true perfor-

mance of a classifier as though we had used all n

training samples to classify an utterance that we

had not seen yet. Training and testing on all the

data would give an overly optimistic result. Jack-

knifing procedures leave one datum out of the

training set and then tests performance on that

datum. Jackknifing gives accurate estimates of the
performance, but with large variances, because

every test result is all correct or all wrong. Boot-

strapping uses a portion of the data for training

and the remaining data for testing. By extrapo-

lating our results, we get an estimate of the true

classifier performance that we would get if we used

all the data to build the classifier, and we also get

an estimate of the variance of our performance
estimate.

In the 0.632 bootstrap procedure, we first select

n training points, with replacement, from the

original n data points. Because we are choosing

with replacement, the probability distribution of

the training data is an unbiased approximation of

the original data�s probability distribution. It is

easy to show that for large databases, on average
1� 1=e ¼ 0:632 of the original data are chosen for

training; some data points are chosen multiple

times. By repeatedly choosing bootstrap samples

and training classifiers, we can obtain reliable es-

timates of the true error rate and can also get a

confidence estimate.

There are many ways to estimate the error of a

classifier. We compute the apparent error, ea, using
the same data for training and testing; the appar-

ent error is an optimistic estimate of performance,

since the classifier is tuned to the testing data. The

error from one bootstrap sample, ebi , is pessimis-

tic; the classifier is trained on a subset of all the

available data, and we would certainly do better if

we used all the data. The true error rate––et, the
errors we would see if we used all the data to train
our classifier and then tested on new data––is a

value between these two estimates. The 0.632

bootstrap procedure estimates the true error of the

classifier as

et ¼ 0:368ea þ 0:632
1

k

XN
i¼1

ebi ;

where each of the N bootstrap trials gives a clas-

sification error of ebi . There were N ¼ 100 boot-

strapping trials in all the studies reported in this

paper.

We use the distribution of bootstrap-error es-

timates to give an estimate of our confidence in the
classifier�s performance. The lengths of the error

bars in all figures indicate plus and minus 1 stan-

dard deviation of the distribution of the errors that

we see during the bootstrap procedure. Since the

bootstrap training sets are not independent, we

underestimate the true variance.

5. Results

We tested the performance of our adult listeners

and BabyEars� classifiers in several different ways.

Section 5.1 describes how adult listeners classified
the test utterances. Section 5.2 reports BabyEars�
multivariate classification performance for several

models of the infant-directed speech. Section 5.3

presents the confusion data. Section 5.4 shows

simplified decision surfaces for our data, which

provide an understanding of the acoustic param-

eters that BabyEars uses to make decisions. Sec-

tion 5.5 describes how well affective recognizers
trained on male or female speech generalize to the

other gender. Section 5.6 describes BabyEars�
performance when the adult-directed or neutral

speech is added to the recognition task. Section 5.7

describes the correlation of BabyEars� perfor-

mance in recognizing adult- and infant-directed

speech. Finally, Section 5.8 discusses the perfor-

mance of speaker-dependent classifiers.

5.1. Listener ratings of infant-directed speech

Our listeners were not 100% consistent in clas-

sifying the utterances; All seven agreed unani-

mously with our segmenter�s classifications for

79% of the infant-directed utterances, at least five

of the seven listeners agreed with the segmenter for
85% of the utterances and at least four of seven
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listeners agreed with segmenter�s classification for

all utterances.

The listeners also varied in their judgments of

the strength of each utterance. Their overall mean
strength rating of the infant-directed utterances

was 3.2; approval utterances received an average

strength rating of 3.6; attentions and prohibitions

were scored 2.8 and 2.9, respectively. Perhaps our

parents were more willing to issue strong approval

messages than they were to get their child�s atten-
tion (and startle her) or to prohibit her. Utterances

judged to be weak in affective content often con-
tained a linguistic message that did not match the

prosodic message. For example, ‘‘Nicholas, don�t
do that’’ said with a soft, pleading voice is a lin-

guistic prohibition but with an encouraging (or

perhaps resigned) affective message.

In addition to the entire data set, we analyzed

two subsets of data based on the adult listeners�
classifications and on these listener�s perceptions of
affective strength. Both subsets included only those

utterances whose affective message was considered

clear and strong, defined as agreement by at least

five of the seven listeners with our original classi-

fication. Additional criteria were based on the

average strength rating of the adult listeners; we

hypothesized that utterances with strong affective

messages would be easier to recognize.
Thus, the three sets of infant-directed utterances

were as follows:

• All Data: This set included all utterances, in-

cluding those for which the listeners did not

agree with our original classifications. Based

on our original classifications, there were 212

approvals, 149 attentions and 148 prohibitions.
There were 263 utterances from female speakers

and 246 utterances from male speakers. There

were 509 utterances in this class.

• Strong Data: This set included utterances for

which at least five of the seven listeners agreed

with our initial classification and that had an av-

erage strength rating greater than 2.5. There

were 208 approvals, 110 attentions and 112 pro-
hibitions that were assigned this strength; 220

were from female speakers, and 210 were from

male speakers. There were 430 utterances in this

class.

• Very Strong Data: This set included utterances

for which at least five of the seven listeners

agreed with our initial classification and that

had average strength ratings greater than 3.0.
There were 179 approvals, 64 attentions and

75 prohibitions; 165 were female, and 153 were

male. There were 318 utterances in this class.

For the three categories, the adult listeners

agreed with our segmenter�s classifications for 96%
(All Data), 97% (Strong Data) and 98% (Very

Strong Data) of the utterances. (These percentages
are higher than those described at the start of

Section 5.1 because they measure average error

rate, not uniformity of judgement.)

5.2. Multivariate classification

Fig. 3 shows the BabyEar�s classification results

for the individual acoustic features of the infant-

directed speech. Classification using any one of

many of the features gave performance greater

than chance. Three features stand out: Two global
pitch measures and the delta MFCC feature each

produced about 50% correct classification––sig-

nificantly better than chance in this three-way test.

These results, and those that follow, were all

computed using 10-Gaussian mixture models to

Fig. 3. Univariate classification performance in a three-way test

for each of the 32 features that we studied. For each feature

type, we show the percent correct for four different temporal

regions of each utterance––first, middle and last third; and the

entire utterance––as shown in Fig. 1.
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represent the probability distribution of each class

of data.

We found the optimal classifier by starting with

the single best feature and adding features one at a

time, at each step adding the feature of those re-
maining that provided the greatest improvement in

performance. Fig. 4 shows classification results for

all our infant-directed training data as we added

more features to the classifier. Classification per-

formance increased as more features were added,

then leveled off above 67% with five to seven fea-

tures.

Classification performance improved when we
considered only those utterances that were judged

by our listeners to have strong and unambiguous

affective messages. Fig. 4 compares classification

performance when bootstrapping included All

Data, Strong Data and Very Strong Data. Clas-

sification results were highest when the data set

was limited to vocalizations with the highest av-

erage strength ratings (i.e., Very Strong Data).
Appendix B lists the features used for all classifi-

ers.

The results shown in Figs. 2 and 3 are based on a

human segmenting discrete utterances from the

speech stream and then further segmenting indi-

vidual utterances into thirds (see Fig. 1), an ap-

proach originated byMcRoberts (McRoberts et al.,

under review). Unfortunately, segmenting speech

into discrete utterances so that they can be split

accurately into thirds is difficult. We can avoid this

problem by using only global features, which are

less sensitive to how well the speech is segmented,

in the classifiers. Fig. 5 compares models using all
features with those using only global features.

Recognition rates were slightly––but not signifi-

cantly––lower with global features, corroborating

the hypothesis that prosodic shape is not impor-

tant. (Note the ‘‘all’’ curve in Fig. 5 is identical to

the ‘‘all’’ curve in Fig. 4.)

Fig. 3 shows that both pitch and articulatory

information are useful to classify an affective mes-
sage. As shown in Appendix B for the strongest

utterances in our database, the top two features

chosen are MFCC and pitch slope, indicating these

two measures are providing relatively independent

information about the speaker�s message.

5.3. Classification confusions

Classification performance varied with affective

message. Overall performance is shown in Fig. 6
for the three types of infant-directed messages.

Fig. 4. Classification performance in a three-way test (ap-

proval, attention, prohibition) as a function of the number of

features. Three curves show our performance for three sets of

our data. Utterances with a strong and clear affective message

(dotted line, five of seven adult listeners agreed on the classifi-

cation) were easier for BabyEars to recognize.

Fig. 5. Prosodic features were calculated over thirds of the

utterance and over the entire utterance (see Fig. 1). This figure

shows the performance of a three-way classifier (approval, at-

tention, prohibition) at distinguishing these messages using

all features and just the global features. The local (third-utter-

ance) features did not perform significantly better than the

global features.
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Tables 1 and 2 compare the confusion matrices for
a classifier built with All Data and for one built

with only the Very Strong Data. Each classifier

was built with the seven best features shown in Fig.

4. In both cases, BabyEars recognized approvals

and attentions moderately well, but its perfor-

mance was noticeably weaker for prohibitions.

The confusion-data results in this paper (Tables

1–3) represent the raw errors used as input to the
bootstrapping procedure. As such, they have an

error rate higher than that shown in Fig. 4:
A portion of the errors arises because each classi-

fier was built with only 63.2% of our training

data.

The confusion data in Table 1 (All Data) show

that prohibitions are mistaken for approvals and

attention bids. As shown in Table 2 (Very Strong

Data), prohibitions were primarily confused with

approvals. One possible explanation for the poor
performance in classifying prohibitions is that

parents were unwilling to give extremely strong

prohibitions in our laboratory while being re-

corded; whether because they were afraid that the

experimenter would not approve, or because they

did not want to upset their children, or because no

situation warranted it. In Fernald�s study (Fer-

nald, 1989), prohibitions were also difficult for
adults to recognize, even though the recordings

were made in the infant�s home.

Our classifiers� performance for approvals in-

creased as it looked at stronger utterances, indi-

cating that these utterances were more distinct

from the other classes and easier to discriminate.

In contrast, its recognition rate for attention and

prohibitions decreased with utterance strength,
perhaps indicating that more of the affective mes-

sage lay in the semantics than in the prosody.

The drop in performance for prohibitions could

indicate mismatches between the linguistic and

prosodic messages not differentiated by our adult

listeners, resulting in a higher proportion of strong

linguistic and weak prosodic prohibitions in the

Strong and Very Strong Data than in All Data.
Perhaps adult�s approval utterances do not contain

such mismatches.

Fig. 6. Classification results for three different types of affective

messages. Prohibitions were classified correctly significantly less

often than were either approvals or attentions.

Table 1

The confusion matrix for three-way classification tests on All

Data based on 20 experimental runs

Truthn
measured

Approval Attention Prohibi-

tion

Correct

Approval 1043 176 317 67%

Attention 173 685 206 64%

Prohibition 306 197 563 52%

Table 2

The confusion matrix for three-way classification tests that used

only Very Strong Data based on 20 experimental runs

Truthn
measured

Approval Attention Prohibi-

tion

Correct

Approval 1058 98 154 80%

Attention 145 271 63 56%

Prohibition 245 68 241 43%

Table 3

The confusion matrix for four-way classification tests on only

Very Strong Data based on 10 experimental trials on the testing

data

Truthn
measured

Ap-

proval

Atten-

tion

Prohi-

bition

Adult Cor-

rect

Approval 427 72 75 120 61%

Attention 48 142 52 12 55%

Prohibition 97 55 65 60 23%

Adult

(neutral)

188 19 54 372 58%
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5.4. Decision surfaces

A classifier looks at the input data––up to 32

acoustic features per utterance in this study––and
makes a decision. Whatever technology it uses to

make that decision, it chooses a definite winner for

each point in the d-dimensional space. The

boundary between one class of data and another is

a decision surface. In an optimal Fisher discrimi-

nator, the decision surfaces are hyperplanes; in

contrast, the GMM classifiers in this study split

the space along elements of hyperellipsoids.
BabyEars models the distribution of each class

of data (Fig. 7) with a mixture of Gaussians and

the relative probability of each mixture determines

the decision surfaces (Fig. 8). Each of the strongest

female utterances is plotted as a function of four

commonly used global features: pitch range, pitch

slope, delta MFCC, and energy variance. We used

the infant-directed data for the upper two plots,
and then added the adult-directed data in the

lower plots.

Fig. 7 shows the raw data as a scatter plot.

Many of the data overlap in the center of these
plots; there are regions where one type of utterance

is much more prevalent than are the others. De-

cision surfaces from large numbers of Gaussians

are difficult to interpret. For this reason, although

we used 10 Gaussians to calculate the classification

results given elsewhere in this paper, in Fig. 7 we

model the data for each class with a single

Gaussian and plot the one standard-deviation
contour.

Fig. 8 shows most likely affective message for

possible values of these four variables. These de-

cisions were based on the single-Gaussian model

that best represents the raw data shown in Fig. 7:

Each pixel of the plot is colored based on the

Gaussian model which had the highest probability

for the values of the feature represented by the
pixel�s location.

Many features help us to build good classifiers.

Figs. 7 and 8 show the results when BabyEars used

the global pitch range and slope, delta MFCC, and

Fig. 7. Each of our strongest utterances plotted as a function of

two pitch variables (left) and energy and MFCC (right). The

top two plots show the measurements for infant-directed

speech; the bottom two plots also include the measurements of

the adult-directed, or neutral, speech. Approvals are dots, at-

tentions are circles, prohibitions are crosses, and adult-directed

or neutral are stars. The ellipses represent the one standard

deviation boundary of each class of data.

Fig. 8. Decision surfaces for the strongest utterances of each

affective class based on single Gaussian models. The graphs

show the regions on a two-dimensional plane for which the

probability of any given class is larger than the probability of

any of the others. See the caption of Fig. 7 for details. Regions

of these plots which are white are judged to be approvals, light

gray regions are prohibitions, dark gray regions are attentions

and black regions are adult-directed utterances.
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global energy variance: Classifiers built with these

features recognized 61%, 62% and 67% of utter-

ances in the three sets of data shown in Fig. 4. The

optimal classifiers, which chose from all 32 fea-
tures, correctly recognized 65%, 66% and 70%

using the four optimal features.

Fig. 8 shows the decision surfaces that resulted

when BabyEars used a single Gaussian to model

each of the three classes of data. At each point in

the vector space, we evaluated the probability of

each model, and then colored the appropriate pixel

in the image corresponding to the winning class.
This simplified view of our data shows several

trends.

First, prohibitions have little pitch slope; in-

deed, most of the prohibitions have a flat pitch.

Approvals and attentions are disambiguated by

separate pitch cues. Attentions have a large pitch

slope, which can be either positive or negative. On

the other hand, approval messages have a large
pitch range.

Second, adult-directed speech tends to lie at the

intersection of the three infant-directed classes.

This finding is consistent with the idea that our

adult-directed speech has a neutral affect com-

pared to the strongest infant-directed messages.

5.5. Male versus female features

For reasons that we do not understand, affec-

tive classification performance was higher for fe-

male speakers than for male speakers (Fig. 9). The

female utterances were classified at a rate up to

76% correct, whereas male utterances were classi-

fied correctly at best 64% of the time. This differ-

ence could be caused by any of five factors.

1. The acoustic features that we analyzed may not

be optimal for male speech.

2. Our procedure may not capture the full affec-

tive range of the male speakers.

3. Female speakers may be more skillful or more

practiced in producing characteristic infant-

directed speech.
4. Male speakers may have been less willing or

able in our corporate laboratory environment

to produce the prototypical utterances of in-

fant-directed speech.

5. People and BabyEars both may perceive male

speech differently from the way they do female

speech.

Interestingly, average strength ratings by our

listeners were equal for male (3.14) and female

speakers (3.15). Perhaps male speakers were put-

ting more of the message into the words than into

the prosody, so the average strength of the utter-

ance was judged the same as female speakers who

did the opposite.

Male and female speakers encoded their infant-
directed speech in different ways; the features and

classifiers optimized for one gender worked poorly

on the other gender. Fig. 10 shows the results of

several tests comparing training and testing on the

two genders. In the first case (infant-directed

speech), models trained on male utterances per-

formed poorly but nearly identically on utterances

by both genders. In most cases, the features and
discriminators trained with utterances made by

one gender generalized poorly to utterances made

by the other gender. In the two-way tests of adult-

directed versus infant-directed speech, classifiers

optimized for utterances made by one gender�s
classifier produced results less accurate than

chance when applied to utterances by the other

gender. These results (and those shown in Fig. 9)
indicate that gender-independent recognition is

Fig. 9. Gender-specific classification performance in a three-

way test (approval, attention, prohibition) as a function of the

number of features.
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possible when the system is trained with both male

and female examples; perhaps there is enough in-

formation in the pitch range of each utterance to

disambiguate the gender. More importantly, these

results suggest that the male and female speakers
in our study are conveying affect with different

prosodic features.

5.6. Adult-directed versus infant-directed speech

We studied adult-directed utterances in separate

tests. Fig. 11 shows BabyEars� performance dis-

criminating between adult-directed and infant-

directed speech, or equivalently detecting speech

that had an affective message. In this test, we used

all the selected adult-directed and infant-directed

speech. Again, we were able to classify the female
speech more accurately (92%) than the male (79%)

in this two-way test.

Results for four-way classification tests––neu-

tral, attention, approval and prohibition––are

shown in Fig. 12. In this case, both male and fe-

male utterances were classified more accurately

when they were separated by speaker�s gender than
when all utterances were combined. The inability
of one gender�s recognizer to classify the other

gender�s utterances is strong evidence that our
classifiers were using different features to make the

distinctions, possibly because male and female

speakers were communicating their affective mes-

sages in different ways.

Performance declined for all affective messages

compared to three-way classification. Table 3

shows the confusion matrix that resulted when the

adult-directed utterances were added: The percent
of correctly classified approvals dropped from 80%

Fig. 10. Comparison of gender-specific models for three dif-

ferent kinds of classification experiments. Each line shows how

performance falls when a model optimized for one gender is

applied to utterances made by the other gender. Each line is

labeled with the gender of the speaker of the training data. The

first pair of lines uses the four best features in Fig. 9, the second

pair uses the features from Fig. 11, and the final pair uses the

features from Fig. 12.

Fig. 11. Adult-directed (neutral) versus infant-directed (affec-

tive-message) classification performance as a function of the

number of features.

Fig. 12. Four-way (approval, attention, prohibition and neu-

tral) classification results as a function of the number of fea-

tures.
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to 62%; that of prohibitions dropped from 42% to

23%. The neutral or adult-directed utterances were

identified with the same accuracy as were the ap-

proval messages.

5.7. Adult-directed versus infant-directed correlation

Fig. 13 shows the correlation between our

ability to discriminate infant-directed from adult-

directed speech and our ability to recognize the

affective message in infant-directed speech. Our
hypothesis was that some speakers would be better

than other speakers at making, or would be more

willing to make, the acoustic gestures that char-

acterize infant-directed speech. Fig. 13 shows a

strong correlation, r ¼ 0:74, between our classifi-

ers� ability to recognize an utterance as infant-

directed and their ability to recognize the affective

message.

5.8. Speaker-dependent models

Psychologists and infant-development research-

ers have looked for a set of features that allow

classifiers to operate optimally across speakers.
However, emotional responses, and people�s will-

ingness to display them, vary widely across indi-

viduals, as may the way that people convey an

affective message using speech, or in different situ-

ations. Thus, speaker-dependent classifiers should
be more accurate than speaker-independent clas-

sifiers. Fig. 14 shows our speaker-dependent clas-

sification results. Except for the analysis of the

utterances from one male speaker, our speaker-

dependent classifiers were more accurate than were

our speaker-independent ones.

Utterances of individual speakers were classi-

fied correctly 65–87% of the time in this three-way
test. The results are nearly all above the average

score shown in Fig. 4, demonstrating that knowing

the identity and the particular style of a speaker

is important for classifying his or her utterances

accurately, at least when classifying on the basis

of our features.

6. Summary

BabyEars uses simple acoustic features to rec-

ognize affective messages. Using models that have

only five to seven acoustic features, it classified

correctly 65–75% of a large collection of infant-
directed adult utterances.

Fig. 13. Speaker-dependent classification results plotted as a

function of adult-directed versus infant-directed (horizontal

axis) affective message. In the interest of clarity, error bars have

been hidden. Average vertical error bar is �0.12; average hor-

izontal error bar is �0.09.

Fig. 14. Speaker-dependent results in a three-way (approval,

attention, prohibition) classification test. The results from male

speakers are shown as dotted lines and female speakers are

shown with solid lines.
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Although it is difficult to make comparisons

across different human listeners, computers, and

tasks, we are encouraged by the accuracy of our

recognizers compared to that of both our own and
previously reported human listeners. For example,

consider that our listeners had access to the words

and the prosody, yet were not in complete agree-

ment regarding how to classify the strongest ut-

terances. Our adult listeners agreed with 96% of

the classifications that we assigned initially during

segmentation, which we assumed to be 100% ac-

curate.
Our results are comparable to those reported by

other investigators who controlled the linguistic

message. Engberg and his colleagues (Engberg

et al., 1997) asked an actor to read the same pas-

sage with five different emotions: neutral, surprise,

happiness, sadness and anger. Their human lis-

teners were able to judge the affective message of

the same set of words 67% of the time in this five-
way test. Roy (Roy and Pentland, 1996) played

utterances backwards (to hide the linguistic mes-

sage) to listeners who correctly classified 65–75%

as approving or disapproving. As described in

Section 2, Fernald�s listeners classified 60–80% of

low-pass filtered utterances correctly in a five-way

test.

BabyEar�s classifications were more accurate
for female utterances than for male utterances.

This result is surprising, insofar as adult listeners

judged the utterances� strengths to be similar. As

described in Section 5.5, there are many reasons

why our classifiers might work differently on ut-

terances made by male versus female speakers.

Nonetheless, our results provide strong evidence

that male and female speakers used different fea-
tures to convey the same affective messages to their

infants.

Global features allowed BabyEars to perform

well, reducing the need to segment precisely the

incoming audio. This result will become less im-

portant as speech-recognition systems improve to

the point where they can make accurate judgments

about utterance boundaries.
Our speaker-dependent recognizers performed

more accurately than did our speaker-independent

recognizers. We did not collect sufficient data to

decide whether this performance difference was

due to limitations of our classifiers, or whether

affective vocal messages are more understandable

if you know the prosodic customs of the speaker.

One issue not addressed by this study is the
semantic versus prosodic content of our test ma-

terial. The infants and the BabyEar�s classifier

were only listening to the prosodic signal. We do

not know how the adult speakers were splitting

their message between the two channels; nor do we

know how our adult listeners were making their

judgements. At a reviewer�s suggestion, we per-

formed a small pilot experiment asking adults to
rate the strength of the affective message in text

transcripts of our speech database. We compared

the acoustic and semantic strength ratings, but did

not see any clear patterns as a function of affective

class, gender of the speaker, or prosodic strength.

We used a large collection of infant-directed

utterances to judge BabyEar�s performance in

recognizing affective vocalizations. We found that
a small handful of features is sufficient to allow us

to perform this task at near-human accuracy.

Building BabyEars is one step toward building

machines that understand the emotional messages

communicated by humans.
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Appendix A

We made eight kinds of low-level acoustic

measurements on each utterance. For each feature,

we calculated the value of this statistic over each of

the first, middle and last third (as shown in Fig. 1)
of the utterance and over the entire utterance.
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Pitch variance: The variance of all valid pitch

estimates. The variance has units of octaves

squared. If the utterance is all unvoiced, or no

pitch can be determined, then the pitch variance is
zero.

Pitch slope: The linear regression of valid pitch

data. The slope has units of octaves per frame (20

ms). If the utterance is all unvoiced, or no pitch

can be determined, then the pitch slope is zero.

Pitch range: The difference, in octaves, between

the highest and the lowest pitch values in the utter-

ance. If the utterance is all unvoiced, or no pitch
can be determined, then the pitch range is zero.

Mean pitch: The mean pitch of the utterance. If

the utterance is all unvoiced, or no pitch can be

determined, then the mean pitch is zero. This

feature, by itself, does not allow BabyEar�s to

judge affect, but we included it because knowledge

of whether the speaker is male or female might

make other judgments more accurate.
Mean delta pitch: The change in pitch between

frames (20 ms). We calculated the difference in

pitch for every pair of adjacent frames for which

we had valid pitch estimates. To avoid problems

with octave errors, we ignored frames in which the

pitch changed by more than 0.75 octaves. The

units of this measure are in octaves per frame. This

measure is similar to the mean slope measure.
Absolute value of the mean delta pitch: The total

of the absolute value of the change in pitch from

frame to frame. The pitch slope and mean-delta

pitch measures do not give any information if the

pitch rises and then falls by the same mount. This

measure finds the absolute value of the delta pitch

before computing the mean. Thus, larger pitch

excursions, no matter what their direction, should
produce a larger result than do gradual pitch

glides. Again, to avoid problems with octave er-

rors, we ignored frames in which the pitch changed

by more than 0.75 octaves.

Delta MFCC: The total change in the MFCC

coefficients over the segment. A 13th order MFCC

calculation was made at each frame. The energy

term, C0, was ignored. The sum of the squares of
the frame-to-frame differences between the 12 re-

maining coefficients was calculated. We calculate

the mean over the entire utterance. Well-articu-

lated utterances have larger excursions in spectral

or formant space and give higher values for this

measure. The variance of this measure, which in-

dicates how fast the spectral transitions were, is

also interesting, but was not used in this study.
Energy variance: The variance of the frame-by-

frame energy. This measure is amplitude indepen-

dent; an overall gain change will offset the entire

utterance (in dB), but will not change the variance.

Appendix B

Many features allowed us to build good classi-

fiers. As shown in Fig. 2, different sets of features

produced nearly identical results. In this appendix,

we summarize the features used in each study in
this paper, from first chosen to last chosen. We use

the following abbreviations for each feature name:

pitch variance (PV), pitch slope (PS), pitch range

(PR), mean pitch (MP), mean delta pitch (MDP),

mean absolute value delta pitch (MADP), delta

MFCC (MFCC), and energy variance (EV). We

use suffixes to indicate the time period (1 ¼ first,

2 ¼ second, or 3 ¼ third third, and g ¼ global).
Fig. 4: Strength plot. All: PSg, PRg, MPg,

MADPg, MFCC3, PV2, MFCC2. Strong:

MFCCg, PSg, EV1, PS3, MP2, PVg, MFCC3.

Very Strong: MFCCg, PSg, MP3, EVg, MP2,

PRg, MDP3.

Fig. 5: Global/local plot. All: PSg, PRg, MPg,

MADPg, MFCC3, PV2, MFCC2. Global: PSg,

MPg, PRg, MADPg, MFCCg, EVg, MDPg.
Fig. 6: Message plot. All tests: PSg, PRg, MPg,

MADPg, MFCC3, PV2, MFCC2.

Fig. 9: Gender plot. All: PSg, PRg, MPg,

MADPg, MFCC3, PV2, MFCC2. Male: PSg,

MPg, PRg, MFCC3, EV2, MP1, MADPg. Fe-

male: PSg, PVg, PS1, MP3, MDP2, PR3, EV1.

Fig. 11: AD/ID discrimination. All: PS2,

MFCC3, MFCCg, MDP3, MPg, EVg, MDP1.
Female: PS2, PS3, PR3, MPg, MFCC3, EV3,

MDP3. Male: MPg, PSg, MFCC3, MP3, PS3,

MFCC2, EV2.

Fig. 12: Four-way classification. All: PSg, MP1,

PVg, MFCC3, PS3, MFCC2, EV1. Female: PS2,

PS3, PR3, PS1, MPg, MFCC3, PVg. Male: MPg,

MFCC1, MFCC3, MDPg, MADP3, PS2, PS1.

Fig. 14: Speaker dependent results. (1) MFCC2,
PRg, MADP2, MADP3, MDP2, PV1, MP3. (2)
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EV1, PRg, PR1, MDP1, PR3, EVg, MPg. (3)

MPg, MP2, MFCC3, PR2, MDPg, PVg, PV2. (4)

MP1, MFCC2, MP2, PR3, PVg, EVg, PS1. (5)

MDPg, PRg, EV3, MFCCg, PVg, MP1, MPg. (6)
MFCCg, PR1, EVg, MFCC1, MADP3, MDPg,

EV1. (7) PSg, MP2, MDP3, PVg, PS3, PV1, MP1.

(8) PS3, MADPg, MP2, MADP3, MDP3, MDPg,

MFCC2. (9) MP1, PSg, MFCCg, MPg, MDPg,

PRg, PV2. (10) MP1, PVg, MDP3, EVg, PSg,

MADP1, MP3. (11) MP1, PV3, MFCCg, PR1,

MDPg, PS1, PS2. (12) PS3, MFCC2, EV1, EV3,

MFCC3, MADP3, PRg.
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