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ABSTRACT 
We examined the ability of multi-layer perceptrons 

(MLPs) trained with backpropagation to  classify vowels excised 
from natural  continuous speech. Two spectral representations 
were compared: spectrograms and cochleagrams. The features 
used to  train the MLPs included DFT or cochleagram 
coefficients from a single frame in the middle of the vowel, or 
coefficients from each third of the vowel. We also investigated 
the effect of three additional features - estimates of pitch, 
duration and the relative amplitude of the vowel. Our experi- 
meqts showed tha t  with coefficients alone, the cochleagram was 
superior to  the spectrogram in classification performance for all 
experimental conditions. With the three additional features, 
however, the results were comparable. Perceptual experiments 
with trained human listeners on the same d a t a  set revealed t h a t  
MLPs perform much better than humans on vowels excised from 
con text. 

1. INTRODUCTION 
A common aspect of vowel classification experiments with 

artificial neural networks (ANNs) has been the use of some type 
of spectral representation of the speech signal as  input to  the 
network. Networks trained on spectral coefficients extracted 
from multiple frames in the vowel have displayed performance 
comparable t o  tha t  of human listeners (1,2]. 

Leung [3] used an  auditory-based spectral representation 
[4] and MLPs t o  classify the 16 vowels and diphthongs of Ameri- 
can English in natural  continuous speech. The vowel tokens 
were excised from all phonetic contexts in sentences of the 
TIMIT database, a standardized acoustic phonetic corpus of 
continuous speech, displaying a wide range of American dialecti- 
cal variation [5,6]. Recognition accuracy of GO% was obtained 
with spectral information alone, and  77% with the addition of 
duration and phonetic context. 

Recent experiments have shown the superiority of audi- 
tory models over conventional representations (e.g. DFT, filter- 
bank mel-cepstrum) for recognition of words and digits under 
noisy conditions [7,8]. However, there have been no direct com- 
parisons of auditory models and conventional representations 
for classification of vowels in natural  continuous speech. In this 
paper, we report results of experiments comparing two spectral 
representations: the constant-increment DFT and the 
cochleagram, a computational model of the peripheral auditory 
system [g, 101. 

We address the following questions about the ability of 
MLPs to  perform speaker-independent vowel classification using 
these two representations: 

How much information does a single spectral slice convey 
about the identity of a vowel? 

How does performance improve with the use of spectra 
from each third of the vowel? 
What  is the effect of adding three additional features - 
median pitch, duration, and relative amplitude - to  the 
spectral information? 
How does classification performance compare to  tha t  of 
trained human listeners on the same task? 

2. THE COCHLEAGRAM 
We use a cochlear model designed by Lyon (91 and  

described by Slaney (10) t o  convert a sound waveform into a 
multidimensional vector t h a t  represents the information sent 
from the ear t o  the brain. This system is diagrammed in Figure 
1. It  is important t o  remember t h a t  the cochlear model used 
here does not t ry  t o  accurately model the internal structure of 
the ear bu t  only t o  approximate the information contained in 
the auditory nerve. 
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Figure 1. Lyon's Cochlear Model 

The cochlear model in this study uses a relatively simple 
filter t o  simulate the response of the outer and middle ears. A 
cascade of second order filters is used t o  model the propagation 
of sound along the  basilar membrane. A t  each point along the 
cochlea, the basilar membrane responds best t o  a broad range 
of frequencies and  i t  is this movement tha t  is sensed by the 
inner hair cella. The "best" frequency of the cochlea varies 
smoothly from high frequencies at the base t o  low frequencies at 
the apex. Inner hair cells only respond t o  movement of the basi- 
lar  membrane in one direction. This is simulated in Lyon's 
model with an  array of Half Wave Rectifiers (HWRs) tha t  
detect the output of each second order filter. The HWR non- 
linearity serves t o  convert the motion of the basilar membrane 
at each point along the cochlea into a signal t h a t  represents the 
energy of the acoustic input and  retains the fine time structure. 
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Finally, four stages of Automatic Gain Control (AGC) 
allow the cochlear model t o  compress the dynamic range of the 
input to  a level t h a t  can be carried on the auditory nerve. The 
AGC used here also serves to  simulate the ear's adaptation to  
loud sounds. Sixty-four of the lowest frequency output channels 
from this cochlear model, spanning the range 0.1-4 kHz, are 
used in this experiment. 

3. EXPERIMENTS 

3.1. Stimuli 
The stimuli for the experiments consisted of featural 

descriptions of the 12 monophthongal vowels of English, shown 
in Table 1. The vowels were excised from all phonetic contexts 
in utterances of the TIMIT database. The diphthongs /oy/, 
/ay/, fey/,  l aw/  were excluded because they are characterized 
by spectral change, and are therefore inappropriate for experi- 
ments using information from a single spectral slice. 

Table 1. The 12 Vowel Classes 

In all experiments, the training set  consisted of 342 exem- 
plars of each vowel provided by 320 speakers, for a total of 
4104 vowel spectra. The test set consisted of 137 exemplars of 
each vowel, provided by a different set of 100 speakers, for a 
total  of 1644 vowel spectra.' 

3.2. Experimental Design 
In the first set of experiments, we compared the perfor- 

mance of artificial neural networks trained on spectrogram or 
cochleagram coefficients, under the following conditions: i) 64 
coefficients from the  center frame of each vowel token 
(explained in the next section), ii) 64 coefficients taken from the 
center frame of each third of the vowel (3  X 64 = 192 
coefficients), and  iii) the averaged coefficients from each third of 
the  vowel (3 X 64 = 192 coefficients). 

In a second set of experiments, the coefficients in each of 
the three conditions above were augmented by three additional 
features - estimates of the fundamental frequency (median 
pitch), duration and  relative amplitude of the vowel. In addi- 
tion, we examined the effects of the three features, added indivi- 
dually and  in pairs, t o  the cochleagram. 

Finally, perceptual experiments were conducted on five 
trained human listeners to  compare their performance with tha t  
of the MLPs. 

' The number or tokens or each vowel class was determined by the 
number of tokens in the least frequent class. It was found that  the vowel l u h l  
had the least number of tokens, 342 in the training set, and 137 in the test set. 
(By comparison, the corresponding figures for the most rrequent vowel class 
fizf were 5798 and 1809 respectively). Thus, for each or the remaining 1 1  vowel 
classes, 342 tokens were selected by iterating through all the 320 speakers, 
picking one token a t  random from each speaker, until 342 diKerent tokens were 
obtained. This  procedure ensured that  there was wide across-speaker variation 
in the tokens selected. A similar procedure was followed in creating the test 
set  (137 tokens per class). 

3.3. Spectral Representations 
Two spectral representations were compared: (a) 

Constant-increment discrete Fourier transform (DFT), and (b) 
the cochleagram. 

DFT. A 256-point real DFT was computed on each utter- 
ance, with a 10 ms Hanning window and 3 ms increment, yield- 
ing 128 spectral coefficients (spanning the range 0-8 kHz). 
Since the important information about vowel identity is found 
below 4 kHz, only the first 64 spectral coefficients (0-4 kHz) 
from each frame were used. The center frame of each vowel 
token was located using the  hand-segmented phonetic transcrip- 
tions provided in the TIMIT database. 

Cochleagram. Unlike the DFT which uses a linear fre- 
quency scale from 0 t o  8 kHz, the cochleagram uses a Bark 
scale. The range O-8kHz is encompassed by 84 spectral 
coefficients. However, the first 64 spectral coefficients span the 
range 0.1-4 kHz. Thus the number of spectral coefficients used 
was the same for the two representations. 

The coefficient values were normalized t o  lie between 0 
and 1 in order t o  train the neural networks. Normalization was 
done by computing the  "relative value" of each coefficient with 
respect t o  the maxima and  minima of all 64 coefficients in each 
frame: 

normalized value = (maz  'x- - min' min) (1) 

where X i s  the value of any  spectral coefficient, maz is the value 
of the largest of the 64 spectral coefficients, and  min is the 
value of the smallest of the 64 spectral coefficients. 

3.4. Additional Features: Pitch, Duration and Rela- 
tive Amplitude 

Three additional features were computed for both the 
training and test utterances and  appended t o  the corresponding 
feature vectors in the DFT and  cochleagram representations. 

Median Pitch. Pitch peaks were located automatically 
using a neural network classifier [Ill. The median pitch was 
calculated based on the 10 pitch peaks closest to  the center of 
the vowel. 

Duration. The duration estimate was taken from the 
phonetic transcriptions provided in the TIMIT database. 

Relative Amplitude. The amplitude estimate was based 
on the peak-tepeak amplitude computed in a 10 msec window 
in the filtered waveform between 0 and 700 Hz. The relative 
amplitude of the  vowel was the  maximum peak-tepeak ampli- 
tude in a 30 ms window around the center of the vowel, divided 
by the maximum peak-tepeak amplitude in a larger window, 
extending 300 ms behind and 250 ms ahead of the vowel. 

3.5. Procedfire 
The neural network classifiers were fully connected feed- 

forward networks (no recurrent links). The number of input 
units of the network was determined by the number of features 
used in the experiment (e.g., 64 or 192). All of the networks had 
12 output units, corresponding t o  the 12 vowel categories. The 
number of hidden layers and the  number of units in each hidden 
layer (one or two) was determined experimentally. We 
parametrically investigated network configurations with one 
and  two hidden layers and different numbers of hidden units in 
each layer. 

The networks were trained using backpropagation with 
conjugate gradient optimization 1121. The procedure for train- 
ing and testing a network proceeded as follows: The network 
was trained on 100 iterations through the 4104 training vectors. 
The trained network was then evaluated on the training set and 
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the 1644 test vectors. This process was continued and the per- 
formance of the network on the training and test vectors was 
recorded after every 100 iterations through the training set. 
The training was stopped when the network had converged; 
convergence was observed a s  a consistent decrease or leveling off 
of the classification percentage on the test da ta  over successive 
sets of 100 iterations. Typically, the networks converged after 
1100-1200 iterations and took 35-40 hours on a Sun 4/60. 

4. RESULTS ’ 

Table 2 shows the classification performance of the net- 
works on the DFT and cochleagram coefficients, for the three 
experimental conditions. It can be seen tha t  (a) with spectral 

Feature(s) P D A 
% 56.56 55.47 56.18 
correct 

Table 2. DFT vs. Cochleagram 
(Spectral Coefficients) 

P D  P A  DA PDA 
55.98 56.82 56.95 56.69 

Hidden 
Units 

DFT Cochleagrams 
1 slice 3 slices Aver- 1 slice 3 slices Aver- 

aged aged 
I Thirds 1 

the number of confusions between /ix/ - /ih/, /a./ - /aa/ ,  
and /ax/ - /ah/. No such pattern was discernible with the 
cochleagram. 

To examine the individual effects of the three features on 
the cochleagram, additional experiments were conducted. In 
these experiments, MLPs (each with 40 hidden units) were 
trained and tested on the 192 cochleagram coefficients 
(representing the averaged thirds of each vowel) augmented 
with all combinations of the three features - pitch alone, dura- 
tion alone, amplitude alone, pitch and duration, and so on. 

The results are tabulated in Table 4. The result with all 3 
features added (PDA) is included for comparison. I t  can be seen 
tha t  there are small differences between the seven feature condi- 
tions, but no evidence tha t  the individual features improve per- 
formance beyond tha t  obtained with the cochleagram 
coefficients alone. 

5. LISTENING EXPERIMENTS 
In order to better interpret these results, we conducted 

listening experiments using the vowel tokens in the training and 
test sets. These experiments allowed us to compare human 
vowel identification performance with tha t  of the neural net- 
work classifiers. Although many vowel recognition experiments 
have been performed, none have used a large number of mono- 
phthongal vowels excised from continuous speech from a variety 
of contexts, with sufficient training on this type of classification 
task. We believe tha t  a lengthy training procedure is necessary, 
since subjects are not used to  hearing segments removed from 
fluent speech. Training on a large set of tokens, with feedback 
on each trial, provides a Fair estimate of listeners’ subsequent 
classification performance (without feedback) on the test set. 

5.1. Stimuli 
The stimuli for the listening experiments consisted of a 

subset of the vowels used in the training and test sets described 
above, excised from utterances in the TIMIT database. The 
training set for these experiments consisted of 900 vowels drawn 
a t  random from the larger set of 4104 vowel tokens. The test 
set had 600 vowel tokens (50 of each class), drawn from the 
larger test set of 1644 vowel tokens. 

The boundaries of each segment were located based on the 
phonetic labels. Using these boundaries, the actual vowel onset 
and offset points were selected so a s  to  minimize the transients 
in the excised segment. The vowel segment was then converted 
to  sound using the digital to  analog converter (0-4 kHz) in a 
Sun 4/60, and presented to  the subject over a loudspeaker. 

1 Thirds 

32 
40 

32-16 

5.2. Procedure 
Training. Five male subjects from the OGI Speech Group 

served as subjects. In the training phase, the subjects were 
asked to  identify the sounds chosen a t  random from the training 
set. Words containing the 12 vowel sounds (e.g., beet, bit, bet) 
were displayed on the console. The subjects could listen to  each 
vowel sound a s  many times a s  needed. They indicated their 
response by clicking the mouse on the appropriate word on the 
display. Feedback was given on each trial. Each subject went 
through 9 sessions listening to  100 vowels in each session. 

56.02 55.47 58.58 53.10 57.27 55.73 
55.66 55.35 58.39 54.44 56.31 56.69 
56.27 55.35 57.79 54.38 56.24 55.08 
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Testing. In the test phase, the subjects were presented 
with the 600 vowel sounds from the test set in sessions of 100, 
with no feedback. All the listeners were tested on the same GOO 
tokens. As in the training phase, they could listen to  each vowel 
sound a s  many times a s  needed. 

5.3. Results 
On the training set, the average performance of the 5 

listeners was 45.5%. To track improvement in  performance 
over the 900 trials, we computed the average performance over 
all listeners for 3 blocks of 300 trials each. The numbers were 
42%, 46% and 48%, showing an  increase in performance with 
increased training. 

On the test set, the average performance (listener-to-label 
agreement) of the 5 listeners was 49.2%. Individual listener per- 
formances ranged from 4G.l% to  51.1%. The average listener- 
to-listener agreement was 53.1%. The pairwise listener-to- 
listener agreement ranged from 47.7% to  59.3%. Thus, the 
listeners seemed to  agree with each other more often than they 
did with the phonetic labels. 

6. DISCUSSION 
The information in a single spectral slice enables neural 

networks to  distinguish between 12 spectrally confusable vowel 
classes with an  accuracy of about 48% (DFT) and 51% 
(cochleagram), as opposed to 8.33% by chance. When three 
slices or averaged spectra are used, performance improves to 
about 53% (averaged thirds of the DFT) and 56% (averaged 
thirds of the cochleagram). This performance can be further 
improved to  about 59% ( averaged thirds of the DFT with 
PDA) by the addition of features tha t  capture important infor- 
mation in the vowel segment. However, these features do not 
produce any improvement when added to  the cochleagram. 

Using coefficients alone, we observed a consistent superior- 
ity of the cochleagram over the DFT in all experimental condi- 
tions. Although the difference was small (3% to  5%), i t  was 
observed over all network configurations in 12 experimental con- 
ditions. This indicates tha t  the cochleagram captures more of 
the phonetic information in the vowel than the DFT. However, 
the relatively poor performance of the cochleagram with the 
additional features defies explanation. We are currently con- 
ducting more experiments t o  analyze these results. 

An interesting result was the average performance of 49% 
by listeners, compared to 59% by the best network 
configuration. One explanation for the relatively poor perfor- 
mance of human listeners on these vowel sounds is the lack of 
contextual information in the stimuli. Since vowel sounds 
undergo considerable restructuring due to  coarticulation effects, 
context is essential for accurate human recognition of these 
vowel sounds. Phillips 1141 presented listeners with segments 
excised from continuous speech from a set of 19 vowel sounds, 
including diphthongs, with right and left phonetic context. The 
average listener-tdistener agreement on the labels was about 
65%. The discrepancy between the two results can be attri- 
buted to  the lack of contextual information in our stimuli. 
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