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Abstract 

The English alphabet is a small but dificult vocab- 
ulary fo r  speech recognition, with many fine phonetic 
distinctions, such as M / N  and B/V.  We  use speaker- 
independent classification of isolated English letters t o  
evaluate the relative performance of the D F T ,  Percep- 
tual Linear Predictive analysis, and the cochleagram 
auditory model. Feedforward neural network classi- 
fiers were trained using all three representations o n  60 
speakers and tested on 60 new speakers. Training and 
testing data were independently modified b y  adding two 
levels of Gaussian noise and babble (20 random let- 
ter utterances, attenuated and given random offsets). 
PLP gave the best results, especially when trained or 
tested on Gaussian noise. 

1 Introduction 

The English alphabet is a small but difficult vocab- 
ulary for speech recognition, with many fine phonetic 
distinctions, such as M / N ,  B/V, B/D and T /G.  Be- 
cause the task requires fine phonetic distinctions, it 
is ideal for comparing signal representations for com- 
puter speech recognition. The authors have previously 
achieved speaker-independent classification rates of 
96% on the English alphabet [l] using DFT and a 
variety of other features. Classification begins with a 
broad-category (fricative, closure, stop, sonorant) seg- 
mentation of the signal. Spectral and other features 
are extracted from the various segments of the letter 
and used by a neural network classifier. 

Previous studies have shown the effectiveness of au- 
ditory models for speech recognition with dcgraded 
and undegraded speech [6, 4, 71. This paper presents 
comparative results for three representations when 
used for whole-word classification with neural net- 
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works. The Discrete Fourier Transform (DFT) is in- 
cluded as a baseline. Two auditory models, Percep- 
tual Linear Predictive (PLP) analysis and the cochlea- 
gram, are used for the same task. 

2 The Representations 

2.1 DFT 

h 128 point F F T  is computed on a 10 msec window 
(extra points folded back in). The signal was Ilanning 
windowed. The result of the F F T  is preemphasized 
to increase the magnitude of the higher frequencies, 
then converted to decibels. This yields 64 numbers 
per frame. Based 011 previous work, we used all 32 co- 
efficient,~ up to 4 kIIz,  and compressed the coefficients 
i n  the range from 4 kHz to 8 kIIz down to 8, yielding 
40 numbers per frame. 

2.2 Perceptual Linear Predictive Analysis 

The PLP speech analysis technique [3] estimates 
an all-pole autoregressive model of the auditory-like 
short-term speech spectrum. PLP has been shown to 
be efficient in suppressing speaker-dependent compo- 
nents i n  the speech signal, and uses fewer coefficients 
than the DFT. Compared to the conventional linear 
predictive (LP) analysis of speech (which estimates 
an all-pole model of the short-term power spectrum), 
the number of coefficients needed to obtain compara- 
ble recognition performance is typically lower for the 
PLP. 

The auditory-like spectrum is obtained by integrat- 
ing the short-term power spectrum of speech over 
siniulat,ed critical-band auditory masking curves, re- 
sampling the integrated spectrum in approximately 
1 Bark intervals, modifying the spectral amplitude by 
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Figure 1: Stages in the PLP analysis. 

a simulated fixed equal-loudness curve and compress- 
ing it through the cubic root nonlinearity to  simulate 
the intensity-loudness power law of hearing (see Fig- 
ure 1). 

This autoregressive modeling efficient,ly approxi- 
mates the spectral peaks in the auditory-like spec- 
trum. The cepstral coefficients of t,he PLP all pole 
model are recursively computed, and weighted with 
an exponential window so all coefficients have a simi- 
lar range for input to  a neural network. Eight cepstral 
coefficients, including log power, of a seventh order 
PLP model are produced for each frame. 

2.3 Cochleagram 

The cochlear model designed by Lyon [5] and de- 
scribed by Slaney [$] converts a sound waveform into 
a multidimensional vector that represents the infor- 
mation sent from the ear to  the brain. This system 
is illustrated in Figure 1. It is important t,o remem- 
ber that the cochlear model used here does not try to 
accurately model the internal structure of the ear but 
only to approximate the information contained in  the 
auditory nerve. 

The cochlear model in this study uses a relatively 
simple filter t o  simulate the response of the outer and 
middle ears. A cascade of second order filters is used 
to model the propagation of sound along tlie Ixisilar 
membrane. At each point along the cochlca, tlic basi- 
lar membrane responds best to  a broad rarige of fre- 
quencies and it is this movement that is sensod by the 
inner hair cells. The  “best” frequency of the cochlea 

Figure 2: Lyon’s Cochlear Model 

varies smoothly from high frequencies a t  the base to  
low frequencies a t  the apex. Inner hair cells only re- 
spond to movement of the basilar membrane in one 
directlion. This is simulated in Lyon’s model with an 
array of Half Wave Rectifiers (HWRs) that detect the 
output of each second order filter. The HWR non- 
linearity serves to convert the motion of the basilar 
membrane a t  each point along the cochlea into a sig- 
nal that represents the energy of the acoustic input 
and retains the fine time structure. 

Finally, four stages of Automatic Gain Control 
(AGC) allow the cochlear model to  compress the dy- 
nainic range of the input to  a level that  can be carried 
on the auditory nerve. The  AGC used here also serves 
to simulate the ear’s adaptation to  loud sounds. 

For these experiments, the $5 outputs per frame are 
compressed to 42 for efficiency. (Experiments showed 
1it.tle difference in  classification accuracy after com- 
pression.) The temporal delay of wave propagation in 
t.lie cochlea is part of the model. The result is that 
low frequency output for a speech event is delayed 
wit,li respect to high frequency output. Feature ex- 
traction based on boundary locations took the delays 
into account. 

3 Experiments 

3.1 Data 

A subset of the ISOLET database [a] was used for 
these experiments. The training set consisted of 60 
speakers saying each letter of the English alphabet, in 
isolation, twice. The test set consisted of 60 different 
speakers saying each letter twice. Speech was digitized 
at  16 kIIz using 16 bits per sample. 
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3.2 The Input Features 

A rule-based segmenter was used to  provide the 
broad-category segmentation used in all the experi- 
ments. This segmentation was fixed a t  the beginning 
and used in all experiments. All letters except W have 
a single sonorant. The  feature extraction routine first 
finds the (longest) sonorant. This is divided into seven 
equal parts and the spectral representation is averaged 
over each of those parts. If there is a stop or fricative 
preceding the sonorant, the spectrum is averaged from 
three equal parts; if no preceding consonant is present, 
the spectrum is averaged over the previous 198 msec. 

The 240 msec following the sonorant is also divided 
into three equal parts and the average spectrum is 
extracted from each interval. A single non-spectral 
feature is used: the duration of the consonant before 
the sonorant. 

3.3 Network Configurations 

Three layer networks, totally connected between 
layers, were trained and tested using back propaga- 
tion with conjugate gradient descent. The networks 
were run through successive sets of 40 or 80 epochs, 
then tested. Training was halted when performance 
on the test set leveled off. The  PLP networks had 105 
inputs; the DFT networks had 521 inputs; the cochlea- 
gram networks had 547 inputs. All networks had 48 
hidden units and 26 outputs. 

3.4 Noise 

Three different kinds of noise were added to the 
signals: Gaussian noise level 1 ,  Gaussian noise level 
2,  and babble. In each condition, the noise was gen- 
erated using a different random seed for each utter- 
ance (the same seeds were used for each representa- 
tion) and added to  the original signal. Sample values 
for Gaussian noise were chosen randomly according to  
a Gaussian probability distribution with mean 0 and 
standard deviation 500. For noise level 1, the gain was 
1.0; for noise level 2,  the gain was 2.0.  The perceptual 
effect was to  add a fairly strong background hiss. 

Babble was the addition of 20 different utterances 
picked randomly from the training set and added to- 
gether with random offsets and a gain of 0.1. The per- 

Table 1: Signal to  noise ratio for the three conditions. 

noise 1 noise 2 babble 
12.5 dB 6.5 dB 14.9 dB 

Table 2: Performance of the three representations. 

DFT PLP COCH 

ceptual effect was several people talking in the back- 
ground and one person nearby saying a single letter 
(the target). Table 1 shows the signal t o  noise ratio, 
wit,h the signal being the average power in the unde- 
graded sonorant of the letter and the noise being the 
average power in the added noise signal. 

3.5 Results 

Table 2 compares each representatioii when trained 
and tested under identical conditions (e.g. trained 
with babble added and tested with babble added). 

Tables 3 through 5 show the performance, for each 
representation, under cross-testing. Nets trained un- 
der each noise condition were tested on da ta  gener- 
ated from the other noise conditions. Three patterns 
emerge: the best performance is usually obtained by 
training and testing in the same condition-the ex- 
ception is that that networks trained in the noise 2 
condition tested better with noise 1 data; training 
on noisy speech and testing on undegraded speech 
produces better results than training on undegraded 
speech and testing on noisy speech; for the best over- 
all performance across conditions, training on babble 
is superior (see Table 6). 

4 Summary and Conclusions 

It is not possible for us to  determine which rep- 
resentation is “best,” but we conclude, for the task 
investigated here, PLP is the representation of choice. 
It h a s  the highest overall accuracy and produces the 

Table 3: Using DFT. 

74.0 
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Table 4: Using PLP. 

noise 2 

Table 6: Average test results across train conditions. 

babble 64.0 

Table 5: Using Cochleagram. 

least number of features. Its performance is about the 
same as the DFT when trained and tested on the same 
conditions, and better when trained on Gaussian noise 
and tested on clean speech or vice versa. 

It is not easy to  compare such different represen- 
tations. For example, the representations have differ- 
ent numbers of coefficients which may require difierent 
network configurations to  produce optimal results; it 
is not possible to try all combinations. We ran some 
additional experiments using the cochleagram repre- 
sentation without improving performance. We ran one 
of the cochleagram networks with twice as many hid- 
den units. There was little change i n  the performance. 
Compressing the cochleagram channels from 85 to 42 
w a s  motivated by a desire for smaller networks and 
by a history of successfully compressing DFT coeffi- 
cients. A single network was run without compression 
with little change in performance. 

We cannot conclude from this study that the 
cochleagram is an inappropriate representation for 
speech recognition. It is designed to mimic the be- 
havior of the first stage of human audition. It may 
prove very effective in other systems-in particular, 
those which attempt to  more directly mimic higher- 
level human audition. 
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