
: A RECOGNITION SYS’TEM FOR AFFECTIV 

Malcolm Slaney und Gerald McRoberts’ 

http:Nwww.interval.codpapers/ 1997-0631 

Interval Research Corporation 
1801 Page Mill Road, Building C 

Palo Alto, CA 

ABSTRACT 

We collected more than 500 utterances from adults talking to their 
infants. We automatically classified 65% of the strongest utterances 
correctly as approval, attentional bids, or prohibition. We used sev- 
eral pitch and formant measures, and a multidimensional Gaussian 
mixture-model discriminator to perform this task. As previous 
studies have shown, changes in pitch are an important cue for 
affective messages; we found that timbre or cepstral coefficients 
are also important. The utterances of female speakers, in this test, 
were easier to classify than were those of male speakers. We hope 
this research will allow us to build machines that sense the “emo- 
tional state” of a user. 

1 VOCALAFFECT 
The goal of a new field of study known as affective computiag is to 
design machines that understand and respond to human emotions 
[9]. There is a range of information available for the development 
of a human-machine interface based on emotion. Locally, we can 
monitor physiological measures of human emotional state, or we 
can judge at a distance using visual or vocal expressions of emo- 
tion. In the latter approach, we attempt to relate aspects of speech 
prosody (e.g., variations in the pitch, rhythm, and loudness of 
speech) to the affective state, or pragmatic intent, of the speaker. 

Studying spontaneous emotion is difficult. Much of the engi- 
neering work on vocal expressions of emotioin is based on actors 
reading sentences in specified emotional tones [2, 8, 111. Such 
expressions at best merely resemble real emotional expressions. 
We need a way to capture affective and pragmatic vocalizations 
that are both spontaneous and clearly identifiable. 

A promising solution to this problem is to use parents’ speech 
to infants. Infant-directed speech is often highly affective and is 
undeniably spontaneous. For example, whether a parent praises a 
young infant with “Goood girrlll!!” for the baby’s first steps, or 
issues a strong prohibition, “NO! STOP!!” when a toddler is about 
to pull a lamp off a table, there is little doubt about the affective 
content, the communicative intent or the spontaneity of the vocal- 
ization. 

Not only is the prosodic message clear, but it may also be uni- 
versal. Femald and her colleagues have shown that the prosodic 
patterns parents use to convey affective and pragmatic messages 
such as prohibition, praise and attention-bid are similar across lan- 
guages and that infants respond appropriately to these vocaliza- 
tions even in unfamiliar languages [3,4,7]. 

Normally, the words and prosody of an utterance contribute (to 
both the linguistic and affective message. We want to see how 
much of the affective message can be recovered from simple 
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acoustic measures of the speech signal. Note that infants and cur- 
rent speech-recognition systems operate on different aspects of the 
vocal signal. Infants understand the prosodic message conveyed by 
“gooood giirrrllll” and “NO! STOP!” long before they understand 
the words. Speech-recognition systems worry about the words and 
mostly ignore the prosody. 

Thus, we simplify: We study how adults convey affective mes- 
sages to infants using prosody. We do not attempt to recognize the 
words, let alone to distill more nebulous concepts such as satire or 
irony. We analyze speech with low-level acoustic features and dis- 
criminate approval, attentional bids, and prohibitions from adults 
speaking to their infants. We built automatic classifiers to create a 
system, Baby Ears, that performs the task that comes so naturally 
to infants. We believe that adult-directed speech c o n t a h  the same 
affective messages as the speech we studied, with the same pro- 
sodic patterns, although attenuated. 

The remainder of this paper describes our data collection (Sec- 
tion 2), signal-processing techniques (Section 3), and results (Sec- 
tion 4). 

2 DATA COLLECTION 

We collected two kinds of experimental data. In the primary exper- 
iment, we collected acoustic data from parents talking to their 
infants. In the second experiment, different adult listeners judged 
whether each utterance was best classified as an approval, atten- 
tional bid, or prohibition, and judged the strength of the message. 

2.1 Acoustic Data 
We recorded 12 parents-six mothers and six fathers-talking to 
their 10- to-18-month-old infants in a quiet room. Each recording 
session lasted about 1 hour, during which the parents were asked to 
play and interact normally with their child. Several toys were 
placed in the room. We asked the parents to use their voices to keep 
their child away from several “dangerous” items, such as lamps 
and microphones. An experimenter stayed in the room to oversee 
the experiment and to encourage verbal interaction. 

We recorded audio from the parent, using a wireless micro- 
phone mounted on a lightweight headset, directly onto a com- 
puter’s hard disk and then downsampled to 22kHz. 

A trained experimenter segmented the recorded audio into dis- 
crete sentences and classified the utterances into three classes: 
approval, attention, and prohibition. Qpical examples of each cat- 
egory follow; note that these words do not do justice to the pro- 
sodic contours: 

*Approval: “Wow!” “Yea. Good Boy.” 
*Attention: “Becca!” “Nicholas, here!” “Anthony?’ 
*Prohibition: “That’s not for you.” “Don’t go in there!” 

For each parent-infant pair, we selected 30 to 5Q utterances, each 
comprising one phrase or sentence. We analyzed 212 approval 
utterances, 149 attentional bids, and 148 prohibitions. 
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2.2 Subjective Classifications 
In a separate test, we had seven adult subjects listen to each of the 
segmented utterances and judge the utterance's category and 
strength. The adult listeners had no training in either linguistics or 
psychology. None of the listeners were familiar with our hypothe- 
sis or method. Each listener rated each utterance as an approval, 
attentional bid, or prohibition, and assigned it a strength on an arbi- 
trary scale from 1 to 5. 

The utterances were grouped into three sets according to the 
results of the listener test: 

All data: All utterances, including those for which the listen- 
ers did not agree with the original classifications 
Strong data: Utterances for which 5 out of 7 listeners agreed 
with the initial classification and the average strength was 
above 2.5 
Very strong data: A subset of strong data, with an average 
strength above 3.0 

We report results on these three sets of data, in addition to gender- 
and subject-dependent tests. 

3 ANALYSIS 
We analyzed the speech using three classes of features: pitch, for- 
mant transitions, and energy variations. In brief, we postulated that 
speech that had long, smoothly varying sounds would indicate 
approval, whereas sounds that changed quickly would be attention 
bids or prohibitions. Several variations of these parameters were 
measured and analyzed for their ability to classify these utterances. 

We performed signal processing on each utterance, and built 
multidimensional classifiers to perform the classification experi- 
ments. 

3.1 Signal Processing 
Each utterance was processed automatically with a frame rate of 
5OHz. A speech-silence discriminator segmented each utterance at 
phrase boundaries [6] .  We then chose the longest phrase in each 
utterance for additional processing. 

For analysis, we processed each utterance as a whole, and split 
each utterance into three segments: the first, middle, and final third 
of the sound. Thus, for each feature-for example, the pitch 
range-we had four measurements over different time periods. 

Three kinds of analysis were done on each temporal period of 
each utterance: pitch, cepstral or formant changes, and energy. 

We analyzed the pitch of each utterance using a high-quality 
dynamic-programming algorithm [ 121. The pitch module produced 
estimates of the speech signal's pitch, measured in Hertz. We then 
computed the log, base 2, of this number to collapse the pitch esti- 
mate into octaves and to put the measurement on a perceptual 
scale. We did not do any postprocessing to correct for possible 
octave errors. We chose Takin's pitch detector because it gave the 
fewest octave errors in our informal tests. 

We measured several statistics related to the pitch: the vari- 
ance, slope, range (maximum minus minimum), and mean. We 
also measured two statistics of the frame-by-frame delta pitch: the 
mean delta pitch, and the mean of the absolute delta pitch. The 
mean-delta pitch is similar to the slope measurement. When either 
frame's pitch is undefined, because it is unvoiced, the delta-pitch 
measures are undefined and do not enter into the calculation. 

We used mel-frequency cepstral coefficients (MFCC) [5] to 
measure the formant information in the speech. MFCC parameters 
are often used in speech recognition as a simple measure of what is 
being said. We wanted to investigate whether the speed with which 
these parameters changed would be a useful feature. Thus, we 
measured the mean frame-by-frame change in the MFCC parame- 
ters during each segment of the utterance. In this calculation, we 
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ignored the energy, or CO component, and summed the absolute 
value of the changes in the remaining coefficients. 

Finally, we also computed the variance of the energy in dB in 
each frame, across each utterance. 

3.2 Classification 
We built many multidimensional discriminators to put each utter- 
ance into the proper class. We judged Baby Ears' performance 
based on whether the automatic classifier produced the same label 
as the experimenter. 

We used a Gaussian mixture model, GMM [lo], with 10 Gaus- 
sians per class, to model each class of data. Since we had a limited 
set of data, we used the ,632 bootstrapping procedure [ l ]  to esti- 
mate our performance. We trained with a set of data, chosen ran- 
domly with replacement, equal in size to the original data set. We 
tested our classifiers with all data that were not used in training. 
We repeated this task 100 times per discriminator, then averaged 
the results to find an estimate of the mean and standard deviation 
of the recognizer's performance with that set of features. We 
obtained similar results with optimal linear discriminators. 

Finally, we built an optimal classifier using greedy selection. 
At each step, we trained three GMMs, one for each class, with the 
current set and each remaining feature. We then chose the feature 
that resulted in the best performance, and added that feature to the 
set. In this way, we found an approximation to the n best features 
for making this classification. This test gave us information about 
which features were adding the most information to the decision. 

4 RESULTS 
The seven adult listeners agreed unanimously with our initial clas- 
sifications in 79% of the examples. There were 430 utterances clas- 
sified consistently by 5 out of 7 listeners with an average strength 
greater than 2.5, and 318 utterances with an average strength 
greater than 3.0. 

Weak affective utterances in our database, as defined by our 
listener's strength measurements, often combined a strong linguis- 
tic message with a different prosodic message. For example, 
"Nicholas, don't do that" said with a soft, pleading voice is a lin- 
guistic prohibition said with an encouraging (or perhaps resigned) 
affective message. 

Figure 1 shows the classification results for individual acoustic 
features. Not one of the features, by itself, allows the classification 
to be made with accuracy much greater than chance (33%). The 
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Figure 2. Performance as features are added for three different sets 
of data, as described in Section 2.2. Error bars show +1 standard 
deviation for two representative bootstraps measurements. Other 
estimates have similar variance. 
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pitch range and energy variance look most promising in this simple 
test. 

Figure 2 shows classification results for all speakers as we add 
more features to the classifier. Classification performance 
increases as more features are added, then levels off above 57% 
with five to seven features. 

Classification performance improves when we consider only 
those utterances that are strong and unambiguous. Figure 2 com- 
pares classification performance when training included all utter- 
ances, only those utterances that had an average strength rating 
greater than 2.5, or only those utterances with average ratings 
greater than 3.0. Classification results are higher when the data set 
is limited to vocalizations with the highest strength ratings. 

For reasons that we do not understand, classification perfor- 
mance was higher for female speakers than for male speakers (see 
Figure 3.) The female utterances were classified at a rate up tci 67% 
correct, whereas male utterances were classified correctly 57% of 
the time. This difference could be caused by four factors. First, the 
acoustic features that we analyzed may not be optimal for male 
speech. Second, our procedure may not have captured the full 
affective range of the male speakers. Third, female speaken may 
be more skillful or more practiced in producing characteristic 
infant-directed speech. Fourth, male speakers may have been less 
willing or able in our corporate laboratory environment to produce 
the prototypical utterances of infant-directed speech. Average 
strength ratings by our listeners were equal for male and female 
speakers. 
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Figure 3. Classifier performance for all utterances (middle line), 
versus males only (bottom line) and females only (top line.) 
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Figure 4. Three way classification results with all features (top 
curve) versus the global features only. 

The results in Figures 1-3 are based on the segmentation 
approach used by McRoberts [7]. Unfortunately, segmenting 
speech into discrete utterances, so that they can be split accurately 
into thirds, is difficult. We avoid this problem if we use only global 
features to make a classification. These features are less sensitive 
to how well the speech is segmented. Figure 4 shows our results 
using only global features. Our recognition rates were slightly 
lower than when we use the full feature set. 

Psychologists and infant researchers have looked for a set of 
features that operate optimally across speakers. However, ema- 
tional responses, and people's willingness to display them, vary 
widely among individuals. The way that people convey an affective 
message often varies across speakers, and even across situations. 
Thus speaker-dependent classifiers should work better than 
speaker-independent classifiers. Figure 5 shows our speaker- 
dependent classification results. Except for two speakers, both 
male, our results are much better with speaker-dependent classifi- 
ers. Training and testing speaker-independent classifiers with all 
utterances from the nine best speakers raises our classification per- 
formance to 66%. 

Figure 6 shows plots of the decision surface for one of our best 
classifiers (recognizing female utterances with a strength greater 
than 3.0). These decision surfaces are plotted as a function of two 
different sets of variables. 

Many features allow us to build good classifiers. The most 
commonly chosen feature is global pitch range, followed by global 
MFCC, global pitch slope and variance of the energy, in the first 
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Figure 5. Performance on classification task as features are 
added for each of 12 adults speakers. The three speakers with 
the worst classification performance are male. 
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Figure 6. Bivariate discrimination surfaces for two different sets 
of global variables. 

segment. Using these features, our classifiers demonstrated a rec- 
ognition rate of 53,54, and 58% correct on the three sets of data in 
Figure 2. Using just global MFCC and global pitch range, they 
obtained 5 1,54, and 56% correct. 

We are encouraged by the accuracy of our recognizers com- 
pared to that of human listeners. While performance was not as 
high as our adult listeners, who had access to the linguistic mes- 
sage, it is comparable to results reported by others who controlled 
the linguistic message. For example, Engberg [2] reported listen- 
ers’ accuracy at 65% when judging emotional messages in Danish 
in which the linguistic message was controlled by using the same 
sentence for different affective messages. Other studies have tried 
to mask the linguistic message through filtering [4, 111, but this 
often introduces artifacts which may alter the affective message. 

5 CONCLUSIONS 
Baby Ears is a system that uses simple acoustic features to recog- 
nize affective messages with the same accuracy as that of some 
human tests. 

We found it easier to classify female then male utterances from 
our database. This result is surprising, because adult listeners 
judged the utterances’ strengths to be similar. We do not know 
whether male and female affective vocalizations are different in 
some interesting way, or whether our data are not representative of 
real-life situations. 

Global features perform well in our classifiers, reducing the 
need to segment precisely the incoming audio. This result will 
become less important as speech-recognition systems improve, 
eventually allowing good sentence boundaries to be judged. Our 
work did not consider any melodic contour matching. That 
approach would work best with good segment boundaries, and per- 
haps with linguistic information to guide the pattem recognition. 

Speaker-dependent recognizers perform more accurately than 
do speaker-independent recognizers. We do not have sufficient data 
to decide whether this performance difference is due to limitations 
of our classifiers, or whether affective vocal messages are more 
understandable if you know the prosodic customs of the speaker. 

We used a large collection of infant-directed utterances to 
judge our results. We found that a small handful of features is suffi- 
cient to perform this task, at near-human levels. Baby Ears is a 
large step towards building machines that understand the emo- 
tional messages communicated by humans. 
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APPENDIX 
We summarize the features used in each figure, from first chosen to 
last chosen.We use the following abbreviations for each feature 
name: pitch variance (PV), pitch slope (PS), pitch range (PR), 
mean pitch (MP), mean delta pitch (MDP), mean absolute value 
delta pitch (MADP), delta MFCC(MFCC), and energy variance 
(EV). We use subscripts to indicate the time period. 
Figure 2: 

All: EVI, PR , MDP , MFCC , MFCC1, EV2, PS, 
> 2.5: EV1, Pk , M&C,, MD%3, MFCC2, MP,, MFCCl 
> 3: MFCC,, Pb,, MP3, EV,, MPl, MDP,, MFCC, 

Male: PS , hhl, PRI, MFCC3, MDP , PR , MDPl 
Female: #R,, PS,, MP,, PV,, MFCC3, Eq1, PSI 

Global: PR,, hFCC,, EV,, P!,, MP,, MADP,, P&, 

Figure 3: 
All: EVI, PR , MDP,, MFCC,, MFCC1, EV2, PS, 

Figure 4: 
All: EV1, PR , MDP,, MFCC , MFCC,, EV2, PS 
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