FastMPEG: Time-Scale Modification of Bit-Compressed Audio Information

Michele Covell, Malcolm Slaney and Art Rothstein
Interval Research Corporation

ABSTRACT!

This paper describes techniques to change the playback speed of
MPEG-compressed audio, without first decompressing the audio
file. There are two primary contributions in this paper. 1) We
describe three techniques to perform time-scale modification in
the maximally decimated domain. 2) We show how to infer the
output of the auditory masking model on the new audio stream,
using the information in the original file. This new FastMPEG
algorithm is more than an order of magnitude more efficient than
decompressing the audio, performing time-scale modification in
the conventional time-domain, and recompressing. Samples of
our results can be found at http://www.slaney.org/covell/Fast-
MPEG/.

1. COMPRESSING AUDIO

This paper describes an algorithm, FastMPEG, to speed up or
slow down the playback rate of audio signals that have been bit-
rate compressed.

In this paper, we use compression in two different senses. We
talk about time-scale compression — that is, speeding up the
playback rate of audio waveforms — and about bit-rate compres-
sion — that is reducing the number of bits that are used to repre-
sent an audio waveform. We preface compression with either
time-scale or bit-rate to distinguish these two types of compres-
sion. When we talk about uncompressed audio or decompression,
we are always referring to the absence or removal of bit-rate
compression.

We describe the FastMPEG algorithms in terms of MPEG
layer 1I compression since all analysis windows are the same
length. Extensions to other types of audio bit-rate compression
that include subband filtering are easy from this description. We
also frame the discussion in terms of speeding up the audio by a
factor of 2-to-1. Again, extensions to other (integer or non-inte-
ger) time-scale-compression or -expansion rates are easy from
this description. Finally, we describe our approach assuming a
constant time-scale-compression rate. That is, given 2 packets we

1. Michele Covell’s current address is YesVideo.com,
2192 Fortune Drive, San Jose, CA, 95131, covell @ieee.org. Mal-
colm Slaney’s current address is IBM Almaden Research, 650
Harry Road, San Jose, CA 95120, malcoim@iece.org. Art Roth-
stein’s current address is McKinley Systems, 1757 Ninth Avenue,
San Francisco, CA 94122, art @mojo-working.com.

0-7803-7041-4/01/$10.00 ©2001 IEEE

3261

hand back 1 packet before receiving more input packets. We
assume this, since for many digital AV applications, if this exact
output rate is not maintained, the video stutters. If this constraint
is not needed for some application, it can be removed.

There are two primary contributions of this paper. First (Sec-
tion 2), we describe three different ways to modify the subband
streams to time-compress (or -expand) the audio signal. This still
requires unpacking the compressed-signal and removing the scal-
ing, but the time-scale modification happens in the maximally
decimated filterbank domain. Second (Section 3), we describe
how to recycle the original masking model and to use that model
to compress the new signal. Instead of evaluating an auditory
model and a psychoacoustic-masking model from scratch, we
describe how to infer and modify the original masking model
with minimal computational effort. Finally, in Section 4, we
describe our results. The remainder of this section presents a
short review of three conventional time-scale compression tech-
niques and of MPEG layer II bit-rate compression.

1.1 Time-Scale Compression

There has been much work over the years on time-scale compres-
sion: that is, playing back an audio signal at a faster-than-
recorded rate. The oldest example of this is the fast playback
approach. The audio signal is played back at a higher rate by
speeding up the analog waveform, shifting the pitch of the signal.
The digital equivalent (fow-pass filtering followed by subsam-
pling) is also used. With a tape recorder, the fast playback
approach has the advantage of extreme simplicity. It has the dis-
advantage of shifting the pitch of the audio.

Another early form of audio speed up is the snippet omission
approach [1]. In the analog domain, this is achieved using elec-
tromechanical tape players with moving magnetic read heads.
These players alternately play and skip short sections of the tape.
Again, the digital equivalent (alternately keeping and throwing
away short groups of samples) is used. Snippet omission has the
advantage of not shifting the pitch of the audio signal. However,
it does shift in the frequency domain some of the signal energy,
resulting in a pronounced buzzing sound during playback. This
artifact is due to the modulation of the input signal by the square
wave of the snippet removal signal.

Most recently, there has been much work on the SOLA
approach (Synchronous Overlap-Add) [2]. SOLA improves on
the snippet omission approach, by tying the duration of the seg-
ments that are played or skipped to the pitch period of the audio
and by replacing the “splicing” with cross-fading. SOLA does
not shift the pitch of the signal and it reduces the audible artifacts
associated with snippet omission. It has the disadvantage of being

* User’s speed control

Audi MPEG CPU PEG Audio
- —
Encoder | Fast Decoder
 MPEG
Disk

Figure 1: This block diagram shows how FastMPEG fits into a
video recorder with a hard disk.

more computationally expensive, since the amount of overlap
that is used is dependent on the local characteristics of the audio
signal.

1.2 Bit-Rate Compression

With the proliferation of internet- and disk-based media applica-
tion, more and more audio remains bit-rate compressed until after
it has been sent to special decompression hardware for playback:
the main processor only sees the bit-rate compressed audio. Often
in these situations, the main processor has neither the free cycles
nor the bandwidth to undo the compression, modify the uncom-
pressed audio, and then recompress the result. An example of
such a device is the personal video recorder that allows a TV sub-
scriber to record programs onto disk and to play them back at a
later time.

These systems will be more useful when they can modify the
compressed audio so that it plays back at faster-than-recorded
rates, without having to modify the hardware and without having
to completely decompress the audio signal. This problem has not
been solved by any of the prior work in time-scale modification:
earlier work assumes that the audio signal is available in the time
domain, in its uncompressed form. We describe three ways to
time-scale modify bit-rate-compressed audio, without decom-
pressing. The best solution depends both on the capabilities and
availability of the processor that is being used and on the type of
audio that has been compressed (speech, music, mixed). A block
diagram of a personal recorder and our modifications to the sys-
tem are shown in Figure 1.

In this paper, we frame our discussion in terms of MPEG
layer Il compression. MPEG layer Il compression starts with a
bank of 32 filters, each covering 1/32 of the original audio band-
width. After filtering, each of the subband output streams are sub-
sampled by a factor of 32 and the top 2 bands are discarded. This
gives 30 maximally decimated subband streams (MDSSs). The
MDSSs are then grouped into packets, with 36 samples from
each subsampled subband contributing to the packet (for a total
of 36%30 = 1080 samples per packet).Within each packet, each
MDSS is “scaled” to bring the maximum value down to a known
level and is quantized with a fixed number of bits assigned to
each sample. The MPEG algorithm then packs the scaling factors
and the quantized samples into a bit stream.

-] -
Bit —® TSMon — Quantize/ >
’ Unpacking | : MDSSs | ¢ Bit Packing]
1 1
Infer
Original Quantization Ahljltlléz{y Modified Quantization

Figure 2: Block diagram of FastMPEG processing steps.

2. MODIFYING THE WAVEFORM

There are four steps in the FastMPEG algorithm,; they are shown
in Figure 2. First we unpack the MPEG bit stream, remove the
scaling, and separate the 30 MDSSs. Second, we perform the
same time-scale modification procedure in parallel on all 30
MDSSs. Third, we infer and modify the psychoacoustic masking
model. Finally, we scale the subband streams, requantize the new
signals with the recycled auditory model, and pack the bits into a
new MPEG bit stream. In this section we describe how the three
different approaches to time-scale modification described in Sec-
tion 1 are modified to make them applicable to MDSSs.

Section 2.1 TSM using snippet omission approach

The first, and simplest, way to achieve time-scale compression is
the snippet omission approach. Upon receiving two packets and
undoing their scaling and quantization, we take 72 samples (two
packets) per MDSS and simply drop groups of samples from each
MDSS. If N is the snippet length, we start a new output stream by
saving, into the output packet, the first N samples per MDSS.
After this, we then skip over the next N samples per MDSS. We
repeat this until we reach the end of the 72 input samples in the
two MDSS packets. Typically, N will be chosen so that it is a
divisor of 36 (usually, N = 6, 9, or 12). If this is not the case (if N
is not a divisor of 36), then we need a slightly different algorithm
on output packets after the first one, to compensate for this
uneven division.

Section 2.2 TSM using fast playback approach

The second way to modify the time scale is the fast playback
approach. With the digital version of fast playback for time-scale
compression, the frequency domain structure of the audio signal
changes so that only the bottom half of the original spectrum is
retained and this bottom half expands linearly to cover the full
range from zero to the Nyquist rate. The algorithm simulates this
frequency shifting behavior but it does so in the maximally deci-
mated frequency domains of the subband streams.

Upon receiving two packets, we throw away all of the sam-
ples from the MDSSs that correspond to the upper half of the fre-
quency bands, without undoing their scaling or quantization. We
undo the scaling and quantization on the remaining half of the
MDSSs, those that correspond to the lower frequency bands. We

3262

take the samples from these MDSSs, low-pass and high-pass fil-
ter each, downsample by a factor of two, and redistribute the low-
pass and high-pass outputs to the full set of MDSS.

To make this algorithm more clear, consider the i MDSS,
where 0 <i< 15. We low-pass the 72 samples corresponding to
the i MDSS and downsample by 2, giving 36 samples. We
assign these 36 samples to the (2*i) & MDSS in the output packet.
We high-pass the same 72 input samples (corresponding to the it
MDSS) and downsample by 2, giving 36 samples. We assign
these 36 samples to the (2*i+/)" MDSS in the output packet.

If computational resources are limited, these “low-pass” and
“high-pass” filters can be as simple as 2-point sums and differ-
ences (followed by division by 2, to maintain the overall power
levels).

Section 2.3 TSM using SOLA approach

Our highest quality way to time compress bit-rate-compressed
audio is to use the SOLA approach. Upon receiving two packets
and undoing their scaling and quantization, we use one of the fre-
quency bands to determine the optimal snippet length. For most
applications, we simply use the lowest frequency band for this
determination. However, if we are working with a band-limited
audio input signal (e.g., telephone speech), we instead check to
see which MDSS has the maximum energy across the two input
packets and we use that MDSS to determine the correct snippet
length.

Once we have selected a MDSS to analyze, we use that chan-
nel’s autocorrelation to determine the optimal snippet length. For
computational efficiency, we do this by zero-padding the 72
points out to a length of 128 points, taking a 128-point real-input
FFT, replacing the FFT values with their magnitude squared val-
ues, then taking a 128-point real-symmetric-input IFFT. The out-
put of this process is a (real-valued) 128-point function that
corresponds to the auto-correlation of the original 72 input
points, with the zero-lag index as the first sample and with the

largest-lag indices temporally aliased around the 64t sample. We
allow this temporal aliasing, since we know that we will not be
using the largest lags as our snippet length because the pitch val-
ues are too low.

We find the highest autocorrelation peak after the peak at
zero lag. The index of this peak (which we will continue to refer
to as N) gives us the snippet length that we should use in this pair
of input packets. We only do this part of the process (the compu-
tation of the autocorrelation and the peak picking) on one of the
30 MDSSs. We use whatever snippet length that we get from this
one channel on all of the other channels.

Once we have found N, we can construct the output packet
using the same approach as described above for snippet omission.
Unlike SOLA in the uncompressed domain, we do not cross-fade
to create the final output packet, but instead simply omit snippets.
We do not cross fade since our estimate of the pitch period is
heavily quantized. Cross fading using a heavily quantized pitch-
period estimate degrades the audio quality (as well as increasing
the computational requirements).

It is worth noting one important difference in the result of
autocorrelation as used by SOLA in the uncompressed and maxi-
mally-decimated domains. Conventionally, during voiced speech,

3263

Accuracy of Cross Corretation

1

@
o

w
+

+* L 3

N
o

L o

Cycles of Pitch Period
N

r * e e
150 1
1uedatins b0 4 £t ot b ettt
osf
ol . . L L .]
50 100 150 200 250 300 350 400
Pitch

Figure 3: Accuracy of snippet length estimation as a function of
pitch for frequencies between 40 and 400Hz. If we knew the
exact pitch and used the closest downsampled integer shift in the
SOLA algorithm, then the standard deviation of the error is
18.57% of a period. On the other hand, the standard deviation of
the error with the downsampled integer shift using the first peak
of the autocorrelation is 2.2% of the pitch period.

autocorrelation produces a peak at the pitch period. The first peak
of the autocorrelation provides a good estimate of the periodicity
of the signal, without introducing a large snippet length during
which the signal might be changing. In the maximally-decimated
domain of the MDSS, the pitch period might not fall near an inte-
ger number of samples. The maximum of the autocorrelation
function often is a multiple of the pitch period. This is shown in
Figure 3: the location of the highest point in the autocorrelation is
at different multiples of the period as the pitch is changed. The
preferred snippet length changes from one pitch period to two or
more periods, thereby introducing large jumps in the snippet
length, even when the pitch is varying smoothly. Using multiples
of the fundamental results in better sounding audio than we
would get by trying to force the snippet length to the nearest (dec-
imated) quantization of the fundamental period. The reason for
the better result is that the multiple-period snippet removal more
closely approximates removing an integer number of pitch peri-
ods.

3. RECYLING THE AUDITORY MODEL

Two steps are needed to finalize the compression of the modified
audio signal. First, we need to calculate a new psychoacoustic
masking model and the appropriate quantization levels to pre-
serve the quality of the audio signal. Then we adjust the quantiza-
tion levels for each band and packet so that we generate an
MPEG bit-stream with the original bit-rate.

MPEG layer II, as well as most other audio compression
algorithms, includes a psychoacoustic model, to determine how
many bits to allocate to each subband. This psychoacoustic
model is used to predict the amount of quantization noise in each
frequency band that is masked by the signal content. By using a
psychoacoustic model, the compression system keeps the per-

ceived quality of the audio as high as possible for the given num-
ber of bits used to encode it.

These psychoacoustic models are expensive to compute. Ide-
ally we would recompute the masking model after we perform
the TSM algorithm. Fortunately, the new signal is much like the
original signal and instead we recycle the auditory model.

The original MPEG bit stream does not explicitly include the
masking levels used to determine how to quantize the original
audio, but it does include the number of bits used to quantize
each subband. We therefore use the original bit allocations of the
input packets to determine the bit allocation of the output packet.
We implicitly infer the new masking model from this evidence
we have about the original model. The new masking model is not
exact, but, arguably, the artifacts introduced by any of the three
TSM algorithms are much larger than the errors due to estimating
the auditory model from the quantization levels.

We estimate the new auditory model by computing the band-
by-band maximum of the quantization levels used in the packets
we combined to form the new packet. Thus if we are using SOLA
to compress two packets into one, the band-by-band maximum of
the quantization levels of these two packets is used as the desired
quantization level of the new packet. On the other hand, if we are
using fast playback then the maximum of the quantization levels
for subband i in the two packets is assigned to subbands i and

1 .

With this process we find the desired quantization levels for
each subband and each packet. Unfortunately, the total bit budget,
the sum of the bits used to quantize each band, is limited. Further-
more, in fast playback, where low-frequency bands are shifted to
high-frequencies, there are fewer legal quantization levels (see
Table B.2 of the MPEG audio standard [3]).

We use an iterative procedure to determine the final bit rate.
Starting with the desired bit rate, we round an illegal subband’s
bit rate up to the next higher legal bit rate. If the cumulative rate
is less than or equal to the allowed bit rate, then we are done. Oth-
erwise, starting at the highest frequency subband, we reduce the
desired bit rate by one, if necessary increasing the desired bit rate
up to the next higher legal value and sum the needed bits to see if
we are at the allowed rate. We reduce the desired rate by one bit
across all the bands before restarting at the highest subband. This
process is similar to the water-filling approach used to define the
original allocation, but is quicker since we expect the new alloca-
tion to look much like the original.

At this point the time-scale modified audio can be scaled,
quantized and packed into an MPEG stream.

4. RESULTS

The FastMPEG algorithm is an efficient way to modify the time-
scale of a data-compressed audio signal. To quantify our effi-
ciency, we compare the cost of our (unoptimized) implementa-
tions running on a 333MHz Pentium I processor. Unpacking the
bits, rescaling and repacking the bits (the null operation) takes
2.9% of real time. Encoding the sound with version 1.0 of the
Linux utility wav2mp takes 72.6% of real time.

3264

The audio signals produced by FastMPEG are degraded by
both the TSM approach and the assumptions that are broken by
modifying the critically-sampled filterbank approach. There are
also artifacts introduced by when we recycle the auditory model,
but we believe the TSM and resulting filterbank errors swamp the
errors due to masking. Examples of FastMPEG’s results are
available on paper’s web site (http://www.slaney.org/covell/Fast-
MPEGY/).

The audio quality for the snippet omission approach suffers
primarily due to the spectral energy splattered by the chopping
action. This modulated energy violates the assumptions behind
the perfect-reconstruction filterbank, but the overall quality is
similar to the quality of the snippet-omission approach on the
uncompressed waveform. The primary advantage of this
approach is its low computational complexity. This approach
takes 2.2% of real time.

With fast playback, the audio quality will depend, to some
extent, on the filters used to separate the input bands into two out-
put bands. We used inexpensive 2-point filters, which introduces
aliasing into the result. Even so, the most noticeable perception
when listening to the fast-playback modified audio is the change
in pitch. Through all the FastMPEG stages, the resulting audio is
clean and, other than the pitch change, the artifacts are small. The
primary advantage of this approach is its plausible result — mod-
ified but understandable — with relatively small computational
effort. This approach takes 3.0% of real time.

Finally, the best audio quality comes from the SOLA
approach to FastMPEG SOLA applied to uncompressed audio
produces very clean audio — artifacts are generally impercepti- .
ble to untrained listeners. Unfortunately, the SOLA operation
violates the perfect reconstruction assumptions and this causes
small artifacts. The result is best described as similar in quality to
AM radio. Like SOLA in the uncompressed domain, this algo-
rithm works best on audio with a single speaker, or single pitch at
any one time. This approach takes 3.3% of real time.

We have described a system for time-scale modification of
bit-compressed audio. These techniques will become more valu-
able as more audio is compressed for delivery to inexpensive
devices

REFERENCES

[1] Paul Gade, Carol Mills. “Listening Rate and Comprehension
as a Function of Preference for and Exposure to Time-Altered
Speech.” Perceptual and Motor S ills, vol. 68, pp. 531-538,
1989.

[2] S. Roukos, A. M. Wilgus. “High Quality Time-Scale Modifi-
cation for Speech.” IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 2, pp 493-496, Tampa, FL,
1985.

[3] ISO/IEC JTC 1, 1993. “Information Technology - Coding of
moving pictures and associated audio for digital storage media at
up to about 1,5 Mbit/s - part 3: Audio, Technical Corrigendum 17,
International Standard IS IEC -, pp- 46-49.

