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Abstract
We present a system that associates faces with voices in a video
by fusing information from the audio and visual signals. The
thesis underlying our work is that an extreme simple approach
to generating (weak) speech clusters can be combined with
strong visual signals to effectively associate faces and voices
by aggregating statistics across a video. This approach does not
need any training data specific to this task and leverages the nat-
ural coherence of information in the audio and visual streams.
It is particularly applicable to tracking speakers in videos on
the web where a priori information about the environment (e.g.,
number of speakers, spatial signals for beamforming) is not
available.
Index Terms: multimodal content analysis, audiovisual,
speaker embeddings

1. Introduction
In this work, we present an approach that automatically con-
nects audio and faces in unstructured videos. We want to iden-
tify the face that corresponds to each speech signal, or con-
versely the speech signal that is produced by each face in a
video. This problem is challenging due to the wide diversity
of possible speakers, the possibility of multiple people being
present, speakers being off screen, and faces turned at inconve-
nient angles to the camera. Our approach works without prior
information or constraints on the number of people present or
the structure of the conversations.

This task is particularly important as we seek to under-
stand the overwhelming numbers of videos now available on-
line. The growth in web-video content has led to the research
toward techniques that can understand video content at scale
[1, 2, 3], spanning efforts to identify, track and characterize se-
mantic dimensions of content in videos (e.g. object and person
detection/tracking, action recognition, event detection) [4, 5],
including early efforts toward better understanding speech and
speaker activity [6, 7, 8, 9, 10].

We describe an approach that makes use of high-quality
facial-recognition systems, along with speaker-diarization tech-
niques, in order to match voices and faces. We demonstrate
that we can take advantage of the multiple modalities to effec-
tively combine robust visual signals with relatively weak speech
diarization models to build a recognition system that identi-
fies speakers in a video, including realizing they might be off-
screen. In this work, we use the words audio, speech, voice,
visual and face to represent unimodal information, while the
word speaker denotes one audio and facial combination.

One possible solution is to note the connection between
movements of a face and the speech signal. FaceSync [11] did
this by using CCA to model the correlation between pixels of
the lower face and the audio signal. One could measure this cor-
relation across all faces and then pick the face that has the high-

est correlation with the voice. But this system requires careful
alignment, in three-dimensions, of the face to a reference image.
Our approach uses a simpler but more robust signal: the pres-
ence of the same face across many speech segments to make a
connection.

Advances in the computer vision community around neural
network-based face detection and recognition technology has
resulted in the development of technology that is robust and
ubiquitous. Thus we can use face recognition to tie together
the audio from multiple points in a video. Here face recogni-
tion refers to the ability to determine which faces correspond to
the same person (face clustering), and not the ability to identify
a face as one of a set of reference images. Our approach does
not require a reference library of face images.

A significant benefit of our approach is that it requires fewer
assumptions about the data: we do not need to know the number
of speakers [12]; nor do we need to assume the lower half of
the video corresponds to the mouth [13]; nor that the face is
onscreen and audio tracks are synced [14]; nor that we have
access to the script [15].

The contributions of this work can be summarized as fol-
lows. First, we demonstrate an effective approach to combin-
ing weak audio and visual1signals to connect faces with voices
while using no labeled data for this task. Second, improving
upon existing work, our approach is designed to tackle per-
ceptual corner cases such as understanding when a speaker is
offscreen. Third, we place no restrictions on the recording en-
vironment (i.e our approach works on top of any video with a
mono audio stream, and does not use spatial information), the
conversational structure and participants entering or leaving the
recording. Finally, our approach is practical for videos on the
open web as it does not require prior knowledge (training sam-
ples of faces or voices) of the individuals that are present.

Section 2 describes our approach and system in detail and
Section 3 describes our experimental framework, the human rat-
ing task to evaluate performance, and presents a discussion of
our results. We conclude with thoughts on future work in Sec-
tion 4.

2. Proposed Approach
In this paper, we demonstrate that a combination of weak audio
and visual signals aggregated across a video serves as a strong
signal for the task of connecting a voice to the face of a speaker.
Our approach relies on the intuition that video content is shot
with the camera attempting to focus on the speaker. During a
speaker’s turn, the camera is likely to show their face for some
time, and the likelihood that this happens at least once over the
course of multiple turns is extremely high. This intuition, com-

1The visual signal is “weak” in the sense of identifying the active
speaker, yet it is state of the art at detecting faces.
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Figure 1: Overview of the processing pipeline at inference time.
Grey components represent pre-trained models for the pipeline.

bined with (the near-perfect) state-of-the-art face clustering en-
ables us to effectively connect faces with voices, even though
we have not seen or heard the specific speaker before. While
such a system can be modified to run online, all experiments
and observations reported in this work are based on running this
system offline.

A block diagram of our pipeline is presented in Figure 1.
The upper branch shows the image stream processing, the lower
branch the audio stream processing and the signals are com-
bined in the right-most block. We note that the key novelties of
our approach are in the Speech Clustering and the Speech-Face
Correlation blocks which we describe in the next subsections.

2.1. Image Stream Processing

The only signal from the image stream used in this work in-
volves detecting and clustering faces. Our system uses a pre-
trained FaceNet system [5] that detects faces and maps them
to a 128-dimensional embedding. This convolutional neu-
ral network model was trained using triplets of matching and
non-matching examples and the final embedding represents
closeness in Euclidean space based on the similarity between
the facial images. FaceNet reports a recognition accuracy of
99.63% on the Labeled Faces in the Wild dataset and 95.12%
on the YouTube Faces DB. In our system, we track and clus-
ter faces using the FaceNet embeddings. Now, given the 128-
dimensional FaceNet embedding representation for all faces
found in the video, we call all the face points within a neigh-
borhood determined by a fixed threshold a “face cluster”. This
face cluster captures the visual appearance of a single person
across the entire video.

2.2. Audio Stream Processing

The audio analysis pipeline is illustrated in Fig 2. The audio
is converted to the frequency-domain for input to the down-
stream stages. The speech detection stage (Section 2.2.1) gen-
erates speech segments, indicated by the green boxes in Fig
2. We assume that the resulting speech segments are uttered
by a single speaker, eliminating the need for a speaker turn-
change decision. We then (under-)cluster these segments (Sec-
tion 2.2.2), giving us speech clusters which likely belong to a
single speaker. While better turn-change detection will improve
performance [16], it is orthogonal to the issue being investigated
here: combining simple audio and visual information creates a
strong system for determining the speaker. The final analysis
step of Speech-Face correlation enables us to balance the rela-
tively weak (i.e. conservative) speaker-diarization system with
strong visual cues from the detected faces.

Figure 2: An illustration of the stages in the audio pipeline.

2.2.1. Speech-Activity Detector

We use a time-frequency representation of the audio and a
neural network-based detector to detect speech activity2. The
model predicts whether speech is present at the rate of 100 pre-
dictions per second. We then smooth these dense predictions
into segments by requiring that a speech segment be at least 1
second long, and that the gap3 between consecutive segments
are at least 0.25 seconds long, and segments with smaller gaps
are collapsed into one.

2.2.2. Speech (Speaker) Clustering with VLAD

The task of clustering speaker turns has received considerable
attention in the context of speaker diarization, which tries to an-
swer the question: “who spoke when” [17, 18, 19]. Our work
differs from the prior diarization research in three ways. First,
our intended domain of application is web videos where care-
fully labeled datasets do not exist and would be expensive to
obtain. Second, videos are recorded in a variety of conditions
and control or instrumentation of the space that would enable
localization signals (i.e. [8]) is infeasible. Finally, the content
is free form with participants entering and exiting the scenes,

3The model was trained to be sensitive to conversational speech, and
distinguishes it from other vocal activity such as singing and laughing.

3While the speech literature often distinguishes between gaps and
pauses (the former has different speakers on either end, the latter has
the same speaker), we do not make such a distinction.
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Figure 3: Connecting speech segments to faces. Edges exist
when a face and speech cluster co-occur. Black edges represent
co-occurrence, red represents the chosen connection. Only one
face is seen during the first speech cluster, so it is easy to assign
that face to that voice. The second speech cluster co-occurs with
two different faces. The third face cluster above is assigned to
this second speech cluster because its faces co-occur more often
on-screen during the time of this speech cluster.

with no further information available a priori.
The combination of the issues above presents significant

challenges to diarization, and especially the clustering phase,
which typically involves hierarchical agglomerative clustering
and relies on heuristics to determine when to stop clustering.
We believe that visual information presents the best opportunity
for determining the correct clustering, which is the approach
this work takes. The audio clustering step, therefore, chooses a
conservative stopping criterion that results in under-clustering,
i.e. more clusters than speakers.

We start by assuming that each speech segment from the
speech-activity detector belongs to a singleton cluster, and com-
pute a (fixed size) embedding for this (variable length) segment.
We use a Vector of Locally Aggregated Descriptors (VLAD)
technique [20], from the image-processing world, to represent
each segment (or combinations of segments) as a point in the
embedding space. VLAD, like i-vectors, is based on local vec-
tor displacements from cluster centers that are computed from
a large speech database. We then use a hierarchical agglomer-
ative clustering [21] algorithm with complete linkage [22] on
the speech segments, and the stopping is determined by a simi-
larity threshold, that is set high to ensure conservative merging
of clusters. In Figure 2, the clustering stage generates 3 clus-
ters where perhaps there should have been 2 because the first
3 speech segments have the same face in the video. Nonethe-
less, the under-clustering is corrected in the next stage, where
the correlation of these clusters with faces accurately identifies
the speaker. We refer to the clusters generated in this manner as
“speech clusters”, henceforth.

2.3. Mapping Voices to Faces

The final phase combines the information extracted from the au-
dio and image streams to determine the speaker for each speech
segment. Recall that we expect face clusters to be perfect (each
face cluster contains images of only one individual and every
instance of that individual) and that speech clusters contain
exactly one speaker (because of conservative agglomeration).
We determine, for each speaker cluster, which face cluster co-
occurs with it most often. Thus for any given speech cluster we
choose the face cluster that appears in the greatest number of
video frames during the temporal extent of the speech/speaker
cluster. Since multiple speech clusters can map to the same face
cluster, this effectively functions as the final stage of speech
clustering, and in the process assigns a face to the speech. Fig-
ure 3 shows an example of the matching process.

Figure 4: ROC curves for the VLAD system with different fea-
tures trained on speech data from LibriVox and YouTube (yt)
on the task of distinguishing same v/s different speakers (cosine
similarity was the similarity metric used).

3. Experimental Results
We experimented with different front-end features and data
sources for training the VLAD model (Section 3.1) and dis-
cuss results from running the full pipeline (Section 3.2). For
our experiments, we used FaceNet [5] with a threshold of 0.85
on normalized embedding similarities.

3.1. VLAD Model Experiments

For the audio pipeline, we experimented with four different
front-end feature representations: a Mel filterbank [23] was
used to generate the Mel spectra, log-Mel and Mel-Frequency
Cepstral Coefficients, and a CARFAC filterbank [24] front-end.
To select the best one, we trained the VLAD encoder model
with each feature, and evaluated its performance on a dataset
of speaker-labeled utterances (LibriVox [25]) to determine how
well the embeddings were able to determine same v/s differ-
ent speakers. The evaluation set consisted of 100,000 pairs
of LibriVox audio clips (average length 3 seconds, from 1200
unique speakers) with the label same or different. For each fea-
ture type, we generated ROC curves (see Figure 4) by changing
the threshold for the boundary between same and different. We
contrasted performance when computing 128 VLAD clusters on
LibriVox data versus speech segments from YouTube. Figure 4
displays a set of the ROC curves and shows the VLAD model
trained on YouTube data with CARFAC features gave the best
speaker discrimination. We used the CARFAC feature in our
audio pipeline. We trained the VLAD model on ∼2M speech
segments from ∼10K YouTube videos. No labels, keywords,
descriptions or speech transcripts were used from the metadata
associated with any of these videos.

3.2. Results of Mapping Voices to Faces

Given the pipeline from Figure 1 and an input video, we can
determine the speaker at any point in the video. Figure 5 shows
some example results from our pipeline, including correctly
determining offscreen speakers, identifying the correct face as
speaker in shots with multiple faces, and an error case.

Since ground-truth labeled data for videos in the wild aren’t
available, we quantify performance using a human rating task.
This task was set up as a verification task, where a rater was pre-
sented with a video clip 10–15 seconds long and the video had
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Figure 5: Typical results from our pipeline, with the first 3 being instances of correctly determined speakers and the last an instance of
an error. A blue box around a face indicates a detected face only, while a red box indicates that that detected face was determined to
be the speaker. From left to right: (a) & (b) Shots from within a few frames of each other, where the system correctly determines the
speaker is offscreen (leftmost image) before the shot shifts to the speaker who is correctly identified (image second from left). (c) The
speaker is correctly tagged in the presence of 2 other faces. (d) Actual speaker is on the far left, and the combination of a small number
of pixels and tilted face pose resulted in the speaker’s face not being detected.

the label SPEAKER on the bounding box over the face deter-
mined to be the speaker (as shown on the examples in Fig 5). If
the system determined there was speech but the speaker was not
visible on-screen, it shows the tag OFF-SCREEN SPEAKER as
on the left panel in Figure 5.

We evaluated performance on a set of 400 randomly sam-
pled YouTube videos. We presented 3558 clips totaling ∼12
hours from these videos to a pool of human raters. For each
clip, we asked three raters if the presented speaker labeling was
correct: that is, when the Speaker or Off-Screen Speaker tag
appeared, it was accurate, and that such a tag correctly labeled
all speech activity. The rater could mark the clip as Correct,
Incorrect, Partially Correct or Unsure. The rater used the la-
bel Partially Correct when part of the segment had the correct
speaker identified while another part had an incorrect speaker
identified, and Unsure when the rater couldn’t tell, e.g. multiple
people with backs to the camera, possible voice-over. For 6 out
of the 3558 segments, a single rater selected the Unsure option.

To understand the rating difficulty of the task, we spot-
checked the rated results for correctness, and computed Fleiss’
kappa on the data to measure of inter-rater agreement [26]. The
kappa on this speaker label verification task was 0.732 (where
1 is perfect agreement, and 0 or less is no agreement above
chance), indicating significant agreement above chance.

The final results from the human rated segments depend on
how the 3 ratings per clip are aggregated and how the Partially
Correct and Unsure ratings are counted. Figure 6 shows the re-
sults corresponding to different rating handling and aggregation
schemes by percentage. Note that the annotated video segments
had an average of 13 faces per video, although on average only
5 speakers accounted for over 85% of screentime, and we use
the lower number 5 to set the baseline probability of randomly
selecting the right face as 20%.

Figure 6 shows that performance of this approach is consid-
erably above chance performance on this task, but also indicates
there is room for improvement. To understand the errors better,
we scanned the data for patterns in the errors where a particular
error mode stood out. In 65% of the error cases, there was a vi-
olation of the assumption that a speech segment was uttered by
a single speaker, i.e. there were a number of cases of multiple
speakers speaking one after the other without a break in speech
activity resulting in a single speech segment. Since improv-
ing speaker turn change detection wasn’t a focus of this work,
we anticipate further gains in the future with a state-of-the-art
speaker turn-change detector.

Figure 6: Speaker association results with different aggrega-
tions of ratings from 3 raters, compared with random chance
(indicated by the dotted line) performance.

4. Conclusions and Future Work

This paper presents an approach for joint audiovisual analysis
of videos to associate each individual’s voice and face. It needs
a pre-trained face and speech detector (high-accuracy versions
of both are now available), but doesn’t need any other train-
ing data. This is the first system, to the best of our knowledge,
to develop an explicit multimodal notion of speakers that can
understand sufficient context to identify the speaker on- and
off-screen, and significantly outperforms random chance on this
task. We see two key directions of future work. First, annotat-
ing a dataset with ground-truth that can be used by the commu-
nity without needing to iterate with human judgment for each
model. Second, we expect that improving the signals in each of
the modalities will lead to improvements.

While the determination of the speaker is useful for many
applications, we believe this perceptual framework is powerful
beyond this task. Audiovisual correlations will help understand
scene structure, enable better understanding of human interac-
tions, power improvements in speech recognition by enabling
them to focus on active speakers. Additionally, our labeling
pipeline in combination with automated methods should en-
able generation of large-scale labeled datasets from videos in
the wild that can drive improvements to the state-of-the-art for
audio-only and visual-only applications.
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